30 May 2013

Path to SPS Testing Prototype Design ODU/SLAC RF Dipole Cavity

Jean Delayen

Center for Accelerator Science Old Dominion University

Acknowledgments

- Work performed by
 - Subashini De Silva (ODU)
 - Jean Delayen (ODU)
 - Zenghai Li (SLAC)
 - Julius Nfor (ODU)
 - Rocio Olave (ODU)
 - HyeKyoung Park (ODU/JLAB)

Outline

- Proof-of principle design and results
- Prototype design vs proof-of-principle cavity
 - RF parameters
 - Multipacting
 - Field flatness and multipoles
 - Higher Order Mode analysis
- Mechanical analysis
 - Mechanical strength
 - Pressure sensitivity
 - Lorentz force detuning
- Tuner
- Helium tank
- Cryostat concept
- Summary and Future plan

Proof of Principle Design

•

- Design requirements
 - Frequency = 400 MHz
 - Beam aperture = 84 mm
 - Total transverse voltage = 10 MV
 - Transverse voltage per cavity = 3.4 MV
- Transverse electric and magnetic fields

Basic Properties

Property	Value	Unit	
V_T^*	0.375	MV	
E_p^*	4.02	MV/m	
B_p^*	7.06	mT	
B_p^*/E_p^*	1.76	mT/ (MV/m)	
U^{*}	0.195	J	
$[R/Q]_T$	286.95	Ω	
Geometrical Factor (<i>G</i>)	140.86	Ω	
$R_T R_S$	4.04×10 ⁴	Ω^2	
At $E_T^* = 1$ MV/m			

•

٠

Fabrication

Surface Treatment, Preparation and Testing

- Bulk BCP 85 μm
- Heat treatment At 600^o C for 10 hours
- Light BCP ~10 μ m
- High Pressure Rinse 3 passes
- Assembly in the clean room

- RF Test Plan
 - High power tests at 2 K and 4 K
 - Rs vs. T
 - Pressure test
 - Lorentz detuning
 - No He processing was done

- RF Tests Performed
 - 2 K high power test
 - Cavity warmed up to 4 K
 - 4 K high power test
 - Cavity cooled down to 2 K
 - 2 K high power test

Assembly

- Followed by a HPR of 3 passes
- Ultrasonic degreased hardware
- Leak tested

• Assembly in clean room

Preparation for Test

- Cable calibration
 - Q₁ = 2.76×10⁹
 - Q₂ = 8.62×10¹⁰
- LLRF control

Test with 500 W rf amplifier

2 K and 4.2 K Test Results

Low-field Q

Beam line port

Coupler port

- Calculated Q due to stainless steel flanges : 3.7 10⁹
- Measured Q : 4.0 10⁹

499 MHz Deflecting Cavity for JLab Upgrade

499 MHz Deflecting Cavity for JLab Upgrade

Summary

- Proof-of-Principle cavity achieved 7 MV deflecting voltage cw
- Residual surface resistance a little high (34 n Ω)
 - Consistent with losses in stainless steel flanges
- Multipacting quickly processed and did not reoccur
- Proof-of-Principle cavity has achieved its purpose
- Ready to move on to the prototype cavity
- Reasonably confident that 10 MV can be achieved with 2 cavities

ODU/SLAC Cavity Design Evolution

Prototype Design

Cavity Dimensions						
	Prototype Design	Proof-of- Principle	Units			
Radius	140.5	170	mm			
Iris-to-iris Length	535	528	mm			
Beampipe aperture	42	42	mm			

Prototype design

Multipacting Simulations

Proof-of-Principle

Using Track3P from the ACE3P Code Suite developed at SLAC

Multipacting Simulations

Multipacting Simulations

Field flatness / Multipoles

	Multipole Components					
	Prototype Design	Proof-of- Principle	Units			
b ₃	455.2	3.0×10 ³	mT/m			
b_4	24.62	0	mT/m²			
b_5	-2.19x10 ⁶	-4.6×10 ⁵	mT/m ³			
At $V_T = 10 \text{ MV}$						

0.0010

Multipole Components

Shift in electrical center of 55 µm due to the asymmetry introduced by the couplers

Prototype cavity w/ couplers, horizontal component
Prototype cavity w/ couplers, horizontal component

DMINION

Wide frequency separation between modes

Nearest cavity mode ~230 MHz away

Nearest cavity mode ~190 MHz away

Couplers

Pick-up Port

RF PARAMETERS	Prototype design	Proof-of- Principle	Units
Deflecting voltage (V_T^*)	0.375	0.375	MV
Peak electric field (E_{P}^{*})	3.66	4.02	MV/m
Peak magnetic field (B _P *)	6.14	7.06	mT
B _P /E _P	1.67	1.76	mT / (MV/m)
Stored Energy (U*)	0.13	0.195	J
Geometrical factor (G = QR _s)	106	141	Ω
[R/Q] _T	427.2	287	Ω
R _T R _s	4.54x10⁴	4.04×10 ⁴	Ω²
[*] at E _T = 1 MV/m			
At V _T = 3.4 MV			
Peak electric field (E _P)	33.2	36.5	MV/m
Peak magnetic field (B _P)	55.7	64.0	mT

Mechanical Analysis

Mechanical strength – Stress

Mechanical Analysis

Results (Stress intensity)

- Main body below 70 MPa
- Stress concentration at coupler ports – solved by machining instead of stamping (flexibility to increase thickness at high stress areas)

Adjacent beam pipe is not needed for SPS test. Then, stiffener will be identical top and bottom and still meets the requirements.

Mechanical Analysis

Pressure Sensitivity-30 Hz/torrTuning Sensitivity+90 kHz/mmLorentz Force Detuning-20 Hz/(MV/m)²

All characteristics improved from the proof of principle cavity design

Niobium property at 2-4K Picture not showing adjacent beam pipe but included in the analysis

Tuner Options

- JLAB scissor jack tuner fits with minimal scaling
- Tuner can be driven by stepper motor or pneumatic control
- Proven performance of JLAB mechanical tuner Resolution/Deadband/Hysteresis < 2 Hz Frequency drift due to Helium pressure fluctuations

Helium Tank

- Simple stainless steel construction
- All cavity and Helium ports on flat surface
- Bellows connections to compensate thermal contraction
- Dummy pipes or internal structure to reduce Helium volume if required.

Cryostat Concept

Helium tank/Tuner Assembly

Horizontal beam deflection

Vertical beam deflection

Ongoing brain-storming to use identical helium tank for both configuration if it is beneficial

Cryostat Concept

- Cryostat concept including as many parts as possible He tank/tuner assembly Magnetic shielding Helium supply and return lines
- Envelope for SPS (520x1200x3100mm) can be met without the adjacent beam pipe

Summary and Future Plan

- "Final" prototype cavity design
 - Better electromagnetic properties than proof-of-principle
 - Includes power and HOM couplers
 - Complies with safety requirements
 - Complies with dimensional requirements
- Integrated system design study ongoing
 - More complete layout
 - Mechanical tuner
 - Helium tank
 - Cryostat concept
- Ready to build and test "final" prototype cavity

