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Steffen A. Bass

Recreating the Big Bang in the Laboratory: 
Computational Challenges 

in High Energy Nuclear Physics

• Scientific Motivation
• Computational Challenge
• Data and Storage Management

Department of Physics
Duke University
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Scientific Challenge:
• Knowledge Extraction from 
Heavy-Ion Collisions
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Phases of Matter

solid liquid gas

QCD matter analogues of 
familiar phases:

• Nuclei behave like a liquid 
– Nucleons are like molecules
• Quark Gluon Plasma:
– “ionize” nucleons with heat
– “compress” them with pressure

new state of matter!
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QGP and the Early Universe

• a few microseconds after the 
Big Bang the entire Universe 
was in a QGP state

• compressing & heating nuclear 
matter allows to investigate 
the history of the Universe 

• the only means of recreating 
temperatures and densities of 
the early Universe is by 
colliding beams of ultra-
relativistic heavy-ions
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Heating & Compressing QCD Matter

The only way to heat & compress QCD matter under controlled 
laboratory conditions is by colliding two heavy atomic nuclei!
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Heating & Compressing QCD Matter

• 1000+ scientists from 105+ institutions
•dimensions: 26m long, 16m high, 16m wide
•weight: 10,000 tons

two more experiments w/ Heavy-Ions:
•CMS, ATLAS

ALICE experiment @ CERN:

typical Pb+Pb collision @ LHC: 

• 1000s of tracks
• task: reconstruction of final state to 
characterize matter created in collision 

typical Pb+Pb collision @ LHC: 
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LHC Data Challenge

Alice Data Flow:
•factor of 100 higher data 
acquisition rate than RHIC 
experiments

LHC Data:
•15 Petabyte per year raw data
•WLCG: World-wide LHC Computing 
Grid: 170 computing centers across 
the world analyze 25 Petabyte of 
data & simulations annually
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Experiments: • observe only the final state

• rely on QGP signatures predicted by Theory

Transport-Models: • simulates the outcome of the experiment

• gives access to not directly observable quantities

• parameters encode the science to be extracted

Knowledge Extraction: Need for Modeling

Challenges:
• time-scale of the collision process: 10-24 seconds! [too short to resolve]
• characteristic length scale: 10-15 meters! [too small to resolve]
• confinement: quarks & gluons form bound states @ hadronization, experiments don’t observe them directly

initial state

pre-equilibrium

QGP and
hydrodynamic expansion

hadronization

hadronic phase
and freeze-out
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Transport Models for RHIC
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microscopic transport models based 
on the Boltzmann Equation:
• transport of a system of microscopic particles
• all interactions are based on binary scattering
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(viscous) relativistic fluid dynamics:
• transport of macroscopic degrees of freedom 
• based on conservation laws:

(plus an additional 9 eqns. for dissipative flows)

hybrid transport models:
• combine microscopic & macroscopic degrees 
of freedom

•current state of the art for RHIC modeling

Each transport model relies on roughly a dozen physics parameters to describe 
the time-evolution of the collision and its final state. These physics parameters 
act as a representation of the information we wish to extract from RHIC. 
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diffusive transport models based 
on the Langevin Equation:
• transport of a system of microscopic particles 
in a thermal medium

• interactions contain a drag term related to 
the properties of the medium and a noise 
term representing random collisions
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The Challenge of a  Model to Data Comparison

experimental data:
histogram #1
histogram #2
histogram #3
histogram #4
histogram #5
histogram #6

model parameters:
parameter #1
parameter #2
parameter #3
parameter #4
parameter #5

• large number of interconnected parameters w/ non-factorizable data dependencies 
• data have correlated uncertainties 
• develop novel optimization techniques: Bayesian Statistics and MCMC methods
• models are computationally expensive: need Gaussian Process Emulators
• general problem, not restricted to HEP/Nuclear Physics

→ interesting challenge for Statistical Sciences

Each computational model relies on multiple physics parameters to describe the 
outcome of the experiment it simulates. These parameters act as a representation 
of the information we wish to extract from the model to data comparison. 
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Computational Challenges
• Open Science Grid
• Storage & Archival of Data
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The Computational Challenge

Model CPU/event # of 
events

# of parameters total CPU

Hydro 4 h 1 12 480 h

Hydro
+afterburner

4 h (hydro) + 1 h 
per afterburner 
event

10,000 18 9,000,480 h

EbE-Hydro +pre/
afterburner

5 h 10,000 12 6,000,000 h

microscopic 
transport

1 h 10,000 6-18 1,200,000 h

creating an event database reasonably covering the parameter-space for a 
selection of most promising transport approaches will require significant 
computing resources in excess of 15 Million CPU-hours (almost two years on 
a 1000 node CPU-farm!)

• use selection of models which best cover the relevant physics
• accumulate sufficient statistics for each parameter set

assumption: use 10 bins for each parameter set
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OSG Workflow: Duke QCD Group

Nukeserv: 100 TB 
array at Duke

local desktop at Duke:
• prepare executable & input files
• configure job for 10-20 cpu-hours

compute cluster @ Duke:
• combine individual job outputs
• run analysis on output files
• perform visualization tasks

RENCI Engage VO submit node:
• CONDOR script transmits job to OSG nodes
• job may run on 1-100,000 nodes independently

GridFTP protocol

Open Science Grid is best suited for:
• trivially parallelizable MC-based simulations
• tasks which can be completed within 10-30 
cpu hours 
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OSG Throughput: Duke QCD Group

• up to 50,000 cpu hours per day from OSG resources!
• computational projects previously thought unfeasible are becoming doable
• still need to utilize statistical tools such as Gaussian Process Emulators to reduce 
the computational footprint
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Data Storage & Management

Model storage/event # of 
events

# of parameters total 
storage

Hydro 2 GB 1 12 240 GB

Hydro
+afterburner

2 GB (hydro) +  
100 MB per 
event (micro)

10,000 18 180 TB

EbE-Hydro +pre/
afterburner

1.1 GB 10,000 12 1,212  TB

microscopic 
transport

100 MB 10,000 6-18 120 TB

assumption: use 10 bins for each parameter set

• simulation data contains information of the full time-evolution of the collision: 
necessary for correlating hard probes with medium evolution

creating an event database for the simulation data requires about the same 
storage capacity as 1-2 years of running of RHIC experiments (1.5 PB). 
Requires significant resources and management tools previously not known 
or available to the Theory Community 
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Data Storage: HPSS at NERSC

HPSS Capabilities:
• theoretical capacity: 200 Petabytes
• buffer (disk) cache: 288 Terabytes
• theoretical maximum throughput: 6.4 GB/sec

Problem:
• network bandwidth/capacity to 
transfer data to/from NERSC
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Outlook & Challenges

Heavy-Ion collisions at RHIC and LHC have produced a novel 
state of matter which is called the Quark-Gluon-Plasma:

• frontier-science w/ a vibrant community: most discoveries 
have only been made during the last decade and many more 
are expected for the next decade

• experiments and model calculations are generating an 
unprecedented amount of data (Petabytes) and require 
extreme-scale computing resources (Petaflops)

• grid computing has been an extremely successful tool for 
providing the required compute cycles

‣ main challenge: data storage and archival needs of the 
modeling community outpace current resources and/or 
available bandwidth for transfer to archival locations

‣ need the OSG equivalent for data storage!! 
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The End
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