

Selected New Heavy Flavor, QCD and Electroweak Results from the Tevatron

Jenny Holzbauer University of Mississippi On behalf of DØ and CDF May 28, 2013

- Wide range of topics today, including:
 - CP violation parameters in $B{\rightarrow}J/\psi K^{\scriptscriptstyle\pm}$ and $B{\rightarrow}J/\psi \pi^{\scriptscriptstyle\pm}$
 - $D^0 \overline{D^0}$ mixing
 - Photon plus heavy flavor production
 - Anomalous quartic gauge coupling search
- Standard caveat: these are speaker's choice of topics, are many other interesting analyses not covered

Tevatron and Experiments

- Tevatron ~ 7km with 1.96 TeV p-p collisions
 - Operation ended September 2011
- DØ and CDF analyses use full data set, ranging from 8.7 to 10.4 fb⁻¹ depending on data quality requirements
- Both have inner tracker, magnet, calorimeter and muon system
 - DØ also regularly reverses magnet polarity •

CDF Detector

- Clean test of CP violation
 - Expect ~0.3% asymmetry from penguin loops in B \rightarrow J/ Ψ K[±], few percent allowed for B \rightarrow J/ Ψ π[±] in SM

$$\begin{split} A^{J/\psi K} = & \frac{\Gamma\left(B^- \to J/\psi K^-\right) - \Gamma\left(B^+ \to J/\psi K^+\right)}{\Gamma\left(B^- \to J/\psi K^-\right) + \Gamma\left(B^+ \to J/\psi K^+\right)} \\ A^{J/\psi \pi} = & \frac{\Gamma\left(B^- \to J/\psi \pi^-\right) - \Gamma\left(B^+ \to J/\psi \pi^+\right)}{\Gamma\left(B^- \to J/\psi \pi^-\right) + \Gamma\left(B^+ \to J/\psi \pi^+\right)} \end{split}$$

- Measure raw asymmetry, then correct for reconstruction asymmetry of K⁺ K⁻ in the detector
 - Kaon asymmetry because K⁻ can interact with detector to form hyperons, no equivalent for K⁺
 - Because of DØ detector magnet polarity reversals, no track or pion asymmetry corrections are needed

Direct CP Violation Parameters in $B \rightarrow J/\Psi K^{\pm}$ and $B \rightarrow J/\Psi \pi^{\pm}$

- Maximum likelihood fit used to extract raw A^{J/} Asymmetry
- Kaon asymmetry from fit to $M(K\pi)$ in $K^{*0}(\overline{K}^{*0}) \rightarrow K^{+}\pi^{-}(K^{-}\pi^{+})$

 $A_K = [1.046 \pm 0.043 \,(\text{syst})] \%$

 Dominant uncertainties statistical and Kaon asymmetry estimate

 $A^{J/\psi K} = [0.59 \pm 0.36 \text{ (stat)} \pm 0.08 \text{ (syst)}] \%$ $A^{J/\psi \pi} = [-4.2 \pm 4.4 \text{ (stat)} \pm 1.8 \text{ (syst)}] \%$

- Results consistent with SM
- A^{J/ψK} most precise to date

Fermilab-Pub-13-088-E, Accepted by Phys. Rev. Lett.

Study the ratio of the D⁰→K⁺π⁻ and D⁰→K⁻π⁺ decay rates, where D^{*}→D⁰π⁺. If no mixing, x'=y'=0.

$$R(t/\tau) = R_D + \sqrt{R_D}y'(t/\tau) + \frac{x'^2 + y'^2}{4}(t/\tau)^2$$

- Same selection applied to both π⁻ (WS) and π⁺ (RS) decay chains, chosen to optimize π⁻ significance based on expected events and sideband information
 - M(Kπ) selection (20 MeV around D⁰ mass peak) strongly reduces background to WS from RW due to D⁰ decay track mis-ID
 - Additional selections for particle ID, decay topology
- Using world averages for m_{_{\rm D0}} and tau in $t/ au=m_{D^0}L_{xy}/(p_T au)$

 $R_D = (3.51 \pm 0.35) \times 10^{-3}$

CDF Public Note 10990

RW and WS separated into t/tau bins and $\Delta M = M(K^+\pi^-\pi^+)-M(K^+\pi^-)$ - $M(\pi^{+})$ bins

D⁰ Mixing

M(K π) used to find D⁰ yield, the ΔM is fit to get D* yield

- "Clean" process to study quark PDFs and rate of gluon splitting to quarks
- Compton scattering at low γ Et (< ~100GeV), pp annihilation with gluon splitting otherwise
- Selections require a central γ, using a NN to help distinguish γ. NN is also used in template fit to determine rate of jets faking γ.
- Secondary vertex mass is used with a template fit to determine b and c quark fractions

Photon plus Heavy Flavor

dơ/dE[↑] (pb/GeV)

10⁻²

10⁻³

104

d₀/dE_T[↑] (pb/GeV) 0. 1 01

10-2

10⁻³

50

100

50

100

- Sherpa or kT fact.
 closest to data for γ
 plus b for high E_T
 - Uncertainties
 higher for γ plus c
 but similar
 preference
- NLO disagrees for E_T > 70 GeV
- Pythia agrees better with x2 heavy flavor

CDF Public Note 10818

Photon plus Heavy Flavor

- Also see γ plus c agrees best with k_{\perp} fact or sherpa for larger p_{τ} values for > 70GeV, k₋ underestimates
- Pythia agrees better with 1.7 enhancement factor for crosssection ratio

Phys. Lett. B 719, 354 (2013)

9

DØ, L = 8.7 fb¹

Higgs search: arXiv:1301.1243

AQGC with WWYY

- WW $\gamma\gamma$ study extension of higgs search with same final state
 - Look for anomalous quartic gauge couplings, SM too small to see
- Dimension 6 operator for Lagrangian, a_0 and $a_c = 0$ in SM:

$$\mathcal{L}_{6}^{0} = \frac{-e^{2}}{8} \frac{a_{0}^{W}}{\Lambda^{2}} F_{\mu\nu} F^{\mu\nu} W^{+\alpha} W_{\alpha}^{-}$$

$$\mathcal{L}_{6}^{C} = \frac{-e^{2}}{16} \frac{a_{C}^{W}}{\Lambda^{2}} F_{\mu\alpha} F^{\mu\beta} (W^{+\alpha} W_{\beta}^{-} + W^{-\alpha} W_{\beta}^{+})$$

- Selection same as for Higgs but with extra jet veto
 - BDT trained for aQGC signal
 - Same BDT used for both a_0 and a_c

11

With cutoff scale of 0.5 TeV, limits are

 $|a_0^W/\Lambda^2| < 0.0025 \; {\rm GeV^{-2}}$ and $|a_C^W/\Lambda^2| < 0.0092 \; {\rm GeV^{-2}}$

Factor of 4-8 better than best published results (OPAL)

Fermilab-Pub-13-133-E, Submitted to Phys. Rev. D

Summary

- Full data set analyses are ongoing at the Tevatron
 - Precise $B \rightarrow J/\psi K^{\pm}$ and $J/\psi \pi^{\pm} CP$ violation measurements with $D \emptyset$
 - Observation of D⁰-D⁰ mixing with CDF
 - Photon plus heavy flavor cross-sections have been measured by both experiments
 - NLO in particular disagrees with data at high E_{T} values
 - aQCG search with DØ
- Overall, there is agreement with the standard model

Many topics not covered today, please see following pages for more results and more information about today's results http://www-cdf.fnal.gov/physics/preprints/index.html

http://www-d0.fnal.gov/d0_publications/d0_pubs_list_runII_bytopic_byyear.html

D⁰ Mixing (CDF)

aQCD, Other Cut Off Values

TABLE II: Expected and observed 95% C.L upper limits on $|a_0^W/\Lambda^2|$, assuming a_C^W is zero and for different assumptions about the form factor.

Cutoff	Expected upper limit $[\text{GeV}^{-2}]$	Observed upper limit $[\text{GeV}^{-2}]$
No form factor	0.00043	0.00043
$\Lambda_{\rm cutoff} = 1 {\rm TeV}$	0.00092	0.00089
$\Lambda_{\rm cutoff} = 0.5 {\rm TeV}$	0.0025	0.0025

TABLE III: Expected and observed 95% C.L upper limits on $|a_C^W/\Lambda^2|$, assuming a_0^W is zero and for different assumptions about the form factor.

Cutoff	Expected upper limit $[\text{GeV}^{-2}]$	Observed upper limit $[GeV^{-2}]$
No form factor	0.0016	0.0015
$\Lambda_{\rm cutoff} = 1 {\rm TeV}$	0.0033	0.0033
$\Lambda_{\rm cutoff} = 0.5 {\rm TeV}$	0.0090	0.0092

- Major background for Higgs production and new physics processes, also implications for QCD, PDFs
- At Tevatron, dominant production is $p\overline{p} \rightarrow \gamma \gamma$ with gluon production as well
- Photons required to be central and pass photon ID requirements
- Backgrounds include gamma jet and jet jet production
 - CDF reduces this using matrix method, D0 uses a 2-D fit to NN

Phys. Rev. Lett. 110, 101801 (2013) Fermilab-Pub-13-022-E, sub. Phys. Lett. B

Jenny Holzbauer

 $\Delta \phi_{\gamma\gamma}$ (rad)

2.5

1.5

