

Timur Perelmutov for the dCache team

Joint EGGE and OSG Workshop on Data Handling in Production Grids HPDC 2007, Monterey, CA

SRM V1.1 interface

- SRM V1.1 has been a part of dCache for over 4 years
- Used in production by US-CMS for over 2 years
- Solid protocol but
- Did not include
 - Explicit Space Reservation and Management
 - Directory functions
 - File Access Permission management
 - Abstractions to describe type and quality of service
- Weak Error and status reporting
- SRM 2 addressed many of the issues

LHC needs

- Common interface to T0, T1 and T2 storage
- Guarantee of space availability
 - Space Reservation
- Storage Class differentiation
 - Access Latency and Retention Policy
- Flexible Namespace management
 - Directory Functions
- ACL Support
 - Permission management functionality
- SRM V2.2 is the answer

dCache SRM v2.2 history

- Prototype of SRM 2.0 interface demonstrated at SC 2003
- Work on dCache SRM 2.1 since late 2004
- LHC experiments input led to SRM 2.2 definition
- in May 2006 WLCG chose a subset of SRM v2.2 which became a dCache project target
- Beta of dCache 1.8 with SRM 2.2 released in April 2007

dCache Services that support SRM

- SpaceManager
 - dCache introduced a new way to partition total space according to their support RetentionPolicy, AccessLatency and VO Groups/Roles.
 - Support for a streaming to HSM model
- LoginBroker a service for the discovery of all dCache Doors (a transfer protocol incarnation deployed on a given host:port)
- PinManager
 - a service for staging and pinning files (Control of online state)
 - Unifies pin and bringOnline requests
 - pin lifetime management
- Pool Repository and Namespace are modified to better support "pin in Cache" operation and "Online" file parameters

Grid Access Control

- Dcache Authorization (gPlazma)
 - Supports VO Certificate proxies
 - Multiple VO Memberships
- PNFS Namespace Service
 - Files are owned by a particular User and Group.
 - No ACL Support
- Chimera Namespace (currently in Beta testing)
 - Full ACL Support by Fall 2007
- SRM permission management functions
 - need both VO Authorization System and ACL capable Namespace Service
 - Full support of SRM Permission Management will follow

GridFTP Door

- Gridftp V1 dCache 1.6, 1.7
 - GSI Authentication
 - Stream and Extended Block (multi-stream) modes of transfer
 - Protocol makes penetrating firewalls and accessing private network data difficult
 - In production for the last 5 years
- GridFTP V2 –dCache 1.8
 - Get/Put for data transfer
 - X Block transfer mode
 - Data Integrity Verification

To Do: Horizontal Scaling

- SRM Interface dCache
 - WEB Service deployed in Tomcat/Axis
 - SQL database for Persistent State Storage
 - Monolith module
 - GSI Authentication 90% CPU load
 - Does not scale to multi-nodes
- Future work
 - Decuple Web Service interface from Business Logic
 - Allow multiple WS endpoints for a single system
 - This will enable usage of DNS Load Balancing

WS, GSI
Authentication

Request Processing

SQL Backend

To Do: Automatic Space Recovery

- Open Science Grid storage is open to opportunistic use by multiple experiments and organizations
- Requires ability to Guarantee that upon the expiration of the lease on disk space, it will be automatically cleaned up
 - Files in the expired Space will be automatically garbage collected
- OSG Contribution will help add support for volatile files with managed lifetimes
- SpaceManager will be used for enabling this functionality

dCache installation example US-CMS T1 (1)

- Stage Area –11 nodes–10TB
 - Pools for staging files from tapes managed by dCache File Hopping
 - Pool-to-Pool copy to read pools
 - Limited resource tape drives running at full rate

◆ Tape to Disk rate improved by 5 to 10 time

dCache installation example US-CMS T1 (2)

Read/Write Area

- >100 nodes
- 700TB of Tape Backed pools
- Will Grow to 1.5 PETABYTE By September 2007
- One Gridftp server per node, used by SRM
- All pools allow both WAN and LAN access
- To improve reliability each pool has LAN and WAN queue
 - LAN Queue with 600 to 1800 active movers
 - WAN Queue with 5 to 15 active movers
 - Busy pool nodes saturate 2xGE for hours on end each.
 - Aggregate transfers exceed 40 Gb/s LAN+WAN.

dCache installation example US-CMS T1 (3)

- 2 Resilient Managers in the same dCache
- Worker Nodes Resilient Manager
 - PRECIOUS file
 - ~ 650 Worker nodes
 - More than 100TB
 - 3 copies of each file
- Precious Pools Resilient Manager
 - 55 TB of non-tape-backed PRECIOUS and RESILIENT pools for unmerged output
- Replica Monitoring is very useful

PhEDEx Transfers

Over the summer CMS was able to move over IPB of data per month over the summer during the SC4 exercises

- CMS has averaged IPB of data moved every month for the last three month
- ➡ FNAL and US Tier-2 centers have contributed significantly

PhEDEx SC4 Data Transfers By Sources matching '.._.*_(?!MSS)'

Tier-2 Centers

Tier-2s also generally met the 50% milestone

- Sum of Tier-2 capacity is similar to the total Tier-1, as indicated in the model
- Tier-2 networking is in good shape

Site	CPU (kSI2K)	Disk (TB)	WAN (Gb/s)
Caltech	538	56	10
Florida	519	104	10
MIT	92	54	ı
Nebraska	347	53	0.6
Purdue	743	184	10
UCSD	318	98	10
Wisconsin	547	119	10
TOTAL	3104	668	

lan M. Fisk Fermilab DOE/NSF Review January 18, 2007 28

References

- dCache <u>www.dcache.org</u>
- dCache SRM http://srm.fnal.gov
- SRM Working Group http://sdm.lbl.gov/srm-wg/
- SRM V2.2 spec http://sdm.lbl.gov/srm-wg/doc/SRM.v2.2.html
- Organization: http://uscms.org
- US-CMS T1 dCache http://cmsdca.fnal.gov

Technical Details

Follow

dCache support Types of Storage Services in SRM V2.2

- AccessLatency (Online, Nearline) Speed of access to the data
- RetentionPolicy (Replica, Output, Custodial)* – quality of retention service
- dCache had to
 - Update PoolManager pool selection mechanism
 - New Pool repository code
 - SpaceManager Space Reservation as vehicle for assignment of these attributes
- * WLCG interpretation: Replica Disk, Custodial -Tape, Online Output not used.

dCache SpaceManager

- dCache PoolManager introduced a new way to group Pools according to their support RetentionPolicy, AccessLatency and VO Groups/Roles, such groups are called LinkGroups.
- SpaceManager makes reservations in one of such LinkGroups
 - Reservation can exceed size of the pool
 - LinkGroups can be used as VO based quotas
 - Late binding between transfer and a pool
- Support for a streaming to HSM model

Space Access Control dCache

- LinkGroups in dCache can be assigned lists of VO Groups and VO Roles that are allowed to perform Space Reservations
- No Functionality for Restricting Access to the Space Reservations themselves