NFSv4 and Petascale Data Management

Andy Adamson CITI, University of Michigan andros@umich.edu

Outline

- GridNFS
 - Integrates NFSv4 into the ecology of Grid middleware
- Linux pNFS prototype
 - NFSv4.1 minor version extension for direct parallel data access

GridNFS - Joining NFSv4 and Grid Middleware

- Globus GSI support
 - Grid X.509 trust infrastructure
- Fine-grained access control with foreign user and foreign group support
- High performance secure file system access for jobs scheduled in an indeterminate future.
- Flexible file name space construction and management

GridNFS - Strong Security

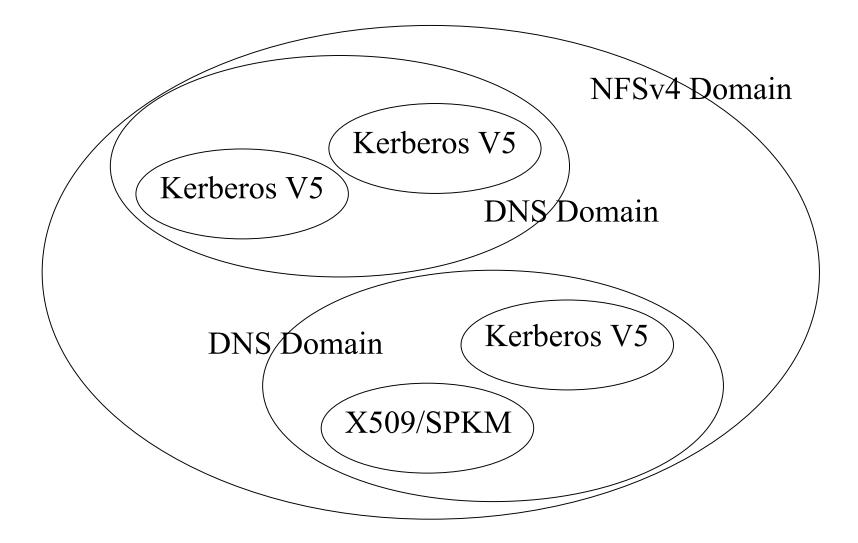
- Security is mandatory for NFSv4
 - RPCSEC_GSS Data privacy, integrity, mutual authentication
 - Kerberos v5, SPKM-3/LIPKEY mandatory security mechanisms (RFC 3530)
- SPKM-3: X.509 GSS mechanism (RFC 2847)
 - Anonymous secure channel for LIPKEY username/password
 - User X.509 credentials can also be used.
 - Plays well with Grid X.509 trust infrastructure
- Linux and Hummingbird (Windows) SPKM-3 implementations

NFSv4 and X.509 Based Security

- PKINIT
 - Public Key based initial authentication in Kerberos
 - X.509 credential, not password.
 - Implemented by CITI for MIT Kerberos
- SPKM-3 based on SPKM-1 and SPKM-2
 - RFC 2847 required work to pass IETF
 - old algorithms, under specified fields, old style error tokens...
 - Rejected by the IETF Security Area working group process
- PKU2U
 - "PKINIT without a KDC"
 - No Kerberos Infrastructure required.
 - Anonymous and X.509 credential support
 - Proposed X.509 based GSS mechanism

GridNFS - Data Access Control

- NFSv4 requires ACLs
 - Similar to Windows ACLs
 - Superset of POSIX ACLs
- "On the wire" names are Unicode strings
 - *Not* integers (except in AUTH_SYS RPC)...
 - Allows ACLs for foreign users
- GridNFS adds secure mechanisms to map foreign
 users to local identity


GridNFS - Data Access Control

- NFSv4 places two types of names on the wire.
- RPCSEC_GSS per security mechanism name in the RPC credential
 - Used for identity and mapped to a UID on the client and server
 - Kerberos V: joe@ANYTHING.ORG
 - X.509: OU=US, OU=State, OU=Arbitrary Inc, CN=joe
- NFSv4 domain name in GETATTR and SETATTR operations
 - ACL name form for users and groups
 - Joe@arbitrary.domain.org

GridNFS - Data Access Control

- NFSv4 domain = unique UID/GID to name mapping
 - Administrative unit for NFSv4
 - AFS has a Cell, NFSv4 has a domain
- Multiple security authorities possible (GSS Names)
 - Multiple Kerberos realms and/or PKI Certificate Authorities result in multiple RPCSEC_GSS credential names
 - Kerberos v5 principal
 - SPKM-3 X.509 DN
- Multiple DNS NIS domains possible (ACL Name)
 - Pick one to DNS domain to be the NFSv4 domain name
 - NFSv4 GETATTR/SETATTR ACL name
 - user@nfsv4domain

NFSv4 Domain

New LDAP Attributes

- We created a new LDAP object to hold two new LDAP attributes for NFSv4 ID mapping
 - GSSAuthName
 - NFSv4Name
- We associate one NFS4Name attribute with an RFC2307 NSS-LDAP posixAccount to hold the users v4 domain name
 - Joe@arbitrary.domain.org
- We associate *multiple* GSSAuthNames with the posixAccount
 - Kerberos V: joe@ANYTHING.ORG
 - PKI: OU=US, OU=State, OU=Arbitrary Inc, CN=joe

GridNFS - Foreign Users

- Mapping of NFSv4 and GSS principal names to UID/GIDs allows for mapping of foreign user and group names.
 - Start with a cross domain security relationship
 - Kerberos cross realm, PKI CA certification path, etc
 - Assign a local UID (posixAccount) and an NFS4Name to a foreign user
 - Associate their GSS principal(s) with the local UID via GSSAuthName.
 - Tested at Sandia National Labs
- NFSv4 provides GridNFS with flexible trust virtualization.

NFSv4 Pseudo File System

- Unlike NFSv2/3 which exports volumes
- NFSv4 exports a virtual server root and read-only pseudo file system
 - onto which exported volumes are mounted as pseudo file system leaves
 - giving server control over the name space visible to the client
- Clients mount '/' and users traverse the pseudo file system to reach exported volumes.

NFSv4 Pseudo File System

- 'Normal' Pseudo file system leaves are mount points for volumes with data
- Pseudo file system leaves can also have no data, but are re-direction points called *referrals*
 - Used for global namespace construction and so never had data mounted
 - Left over from a file system migration

File System Redirection

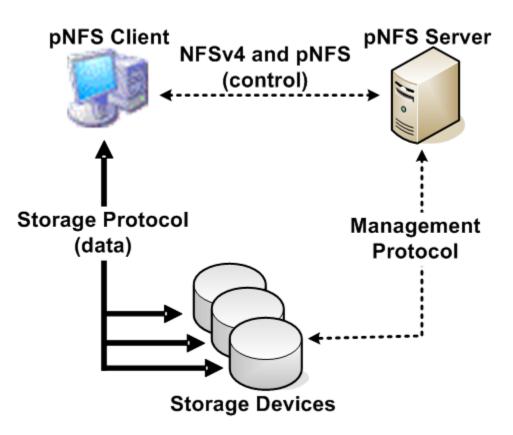
- Client tries to access a referral
- Receives special error ("moved")
- Retrieves *fs_locations* attribute (GETATTR)
 - Value is list of {server, path} pairs giving location(s) of the file system
- Client selects one
 - Policy is effected by server in constructing the list
 - and by client in making selection

NFSv4 Global Name Space

- NFSv4 allows the construction of a global namespace for data management
 - An AFS-like global or VO project namespace
- Client mounts /nfs/<NFSv4 domain>
 - /nfs: on client file system
 - <NFSv4 domain>: DNS SRV specifies server to mount which exports the root of the NFSv4 domain namespace.
- User traverses /nfs/<NFSv4 domain>/foo/bar
 - /foo/bar are served by NFSv4 Pseudo File System and fs_locations redirection.

GridNFS and OSG

- Objective: Back OSG cluster with NFSv4, and run a job in the future with secure NFSv4 file access.
 - Installed Condor and OSG into Linux NFSv4 SPKM-3 only exported file systems.
 - Added LDAP entries and X.509 certificates for OSG daemons
 - Provide a MyProxy server to store job-long renewable proxy credentials
 - Place user long-term GSI X.509 credentials in MyProxy
 - Use our MGRID portal as a job scheduling interface.


GridNFS and Condor

- Submit a job through the portal to execute in the future
 - Portal propagates proxy credentials to an execute node
 - All jobs use Condor's USER_JOB_WRAPPER
 - Proxy credentials available to NFSv4
 - Renews about-to-expire credentials via MyProxy
- Condor Integration It's all about credentials
 - Proxy credential propagation is tied into File I/O mechanism
 - Setup of a job's stderr/stdout is done by the daemon process
 - Lacks necessary credentials.

WAN Performance

- NFS4.0 WAN performance superior to NFSv3, AFS
 - File delegations
- NFSv4.1 pNFS removes single client to single server bottleneck
 - Divides NFSv4 into control and data paths
 - Client can stripe I/O across multiple storage devices
 - Common client for previously proprietary file systems
- Parallel NFS provides high performance secure file system access

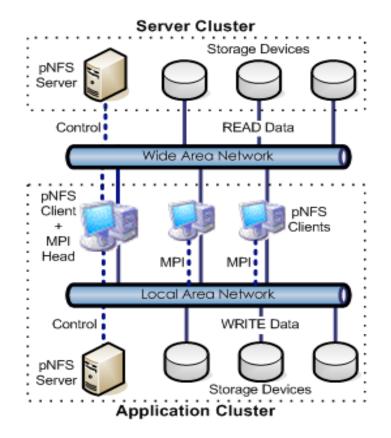
pNFS Architecture

Parallel NFS

- pNFS Client storage protocols
 - File (NFSv4.1)
 - Object
 - Block (SCSI)
 - Other
- Server management protocol not specified
 - Correct NFSv4 behaviour is specified.
- Normal I/O through pNFS server always available
 - Used for low bandwidth requests, failure recovery, etc.

Parallel NFS

- Linux pNFS generic client and server implementation
 - API for opaque storage type specific payloads
 - Client: API to storage type module
 - Server: API to exported pNFS file system
 - File system does most of the work
- NFSv4.1 minor version draft under intense review
 - Sessions (required) and pNFS interoperability tested at Austin Bakeathon, June 11-15th
- Cross storage protocol data transfer accomplished
 - Linux pNFS client copied data between Object and File data stores.


WAN Performance "Smoke" Testing

- UMICH campus 10Gbit net
 - Part of the Ultralight network
- pNFS client with 10Gbit NIC
- 8 node GPFS pNFS server cluster with 1Gbit NICs
 - FC attached storage 3 to 4 year old equipment
- Both run Linux pNFS file storage protocol (NFSv4.1)
- iozone tests with increasing stripe size
 - From 1 to 5 storage servers
 - No tuning.
- Read and write throughput increased linearly
 - Read: 0.75 to 4.0 Gbits/sec
 - Write: 0.43 to 1.2 Gbits/sec

Current pNFS WAN Testing

- Repeating tests across UMICH 10Gbit network
- Run same tests from CERN
 - Ultralight network
 - Mirrored client hardware at UMICH and CERN
- Tuning client and server
- Comparative tests with GridFTP
- MPI Cluster to cluster testing
 - Copy data from clusters across the WAN
 - Clusters using different storage protocols are of interest
- Looking for partners

MPI and pNFS Exported Clusters

pNFS: Embraced by Industry!

- NFSv4.1 storage protocol
 - Linux and Solaris Client
 - Solaris, IBM GPFS, dCache, Linux Server
- Object storage protocol
 - Linux client
 - Linux server exporting Panasas pNFS file system
- Block storage protocol
 - Linux client
 - EMC server exporting pNFS file system
- Other pNFS implementations underway
 - I'm sure this is an incomplete list.....

Conclusion

• GridNFS and pNFS combine and integrate standard Internet protocols, promising compatibility with standards-compliant desktop and enterprise network services.

Questions?

http://www.citi.umich.edu