
NFSv4 and Petascale Data
Management

Andy Adamson
CITI, University of Michigan

andros@umich.edu

Outline

• GridNFS
– Integrates NFSv4 into the ecology of Grid middleware

• Linux pNFS prototype
– NFSv4.1 minor version extension for direct parallel

data access

GridNFS - Joining NFSv4 and Grid
Middleware

• Globus GSI support
• Grid X.509 trust infrastructure

• Fine-grained access control with foreign user and foreign
group support

• High performance secure file system access for jobs
scheduled in an indeterminate future.

• Flexible file name space construction and management

GridNFS - Strong Security

• Security is mandatory for NFSv4
– RPCSEC_GSS Data privacy, integrity, mutual authentication
– Kerberos v5, SPKM-3/LIPKEY mandatory security

mechanisms (RFC 3530)
• SPKM-3: X.509 GSS mechanism (RFC 2847)

– Anonymous secure channel for LIPKEY
username/password

– User X.509 credentials can also be used.
– Plays well with Grid X.509 trust infrastructure

• Linux and Hummingbird (Windows) SPKM-3
implementations

NFSv4 and X.509 Based Security

• PKINIT
– Public Key based initial authentication in Kerberos

• X.509 credential, not password.
– Implemented by CITI for MIT Kerberos

• SPKM-3 based on SPKM-1 and SPKM-2
– RFC 2847 required work to pass IETF

• old algorithms, under specified fields, old style error tokens…
– Rejected by the IETF Security Area working group process

• PKU2U
– “PKINIT without a KDC”

• No Kerberos Infrastructure required.
• Anonymous and X.509 credential support

– Proposed X.509 based GSS mechanism

GridNFS - Data Access Control

• NFSv4 requires ACLs
– Similar to Windows ACLs
– Superset of POSIX ACLs

• “On the wire” names are Unicode strings
– Not integers (except in AUTH_SYS RPC)…
– Allows ACLs for foreign users

• GridNFS adds secure mechanisms to map foreign
users to local identity

GridNFS - Data Access Control

• NFSv4 places two types of names on the wire.
• RPCSEC_GSS per security mechanism name in the

RPC credential
– Used for identity and mapped to a UID on the client and

server
– Kerberos V: joe@ANYTHING.ORG
– X.509: OU=US, OU=State, OU=Arbitrary Inc, CN=joe

• NFSv4 domain name in GETATTR and SETATTR
operations
– ACL name form for users and groups
– Joe@arbitrary.domain.org

GridNFS - Data Access Control

• NFSv4 domain = unique UID/GID to name mapping
– Administrative unit for NFSv4
– AFS has a Cell, NFSv4 has a domain

• Multiple security authorities possible (GSS Names)
– Multiple Kerberos realms and/or PKI Certificate Authorities result in

multiple RPCSEC_GSS credential names
• Kerberos v5 principal
• SPKM-3 X.509 DN

• Multiple DNS - NIS domains possible (ACL Name)
– Pick one to DNS domain to be the NFSv4 domain name
– NFSv4 GETATTR/SETATTR ACL name

• user@nfsv4domain

NFSv4 Domain

Kerberos V5

X509/SPKM

Kerberos V5

Kerberos V5

DNS Domain

DNS Domain

NFSv4 Domain

New LDAP Attributes

• We created a new LDAP object to hold two new
LDAP attributes for NFSv4 ID mapping
– GSSAuthName
– NFSv4Name

• We associate one NFS4Name attribute with an
RFC2307 NSS-LDAP posixAccount to hold the users
v4 domain name
– Joe@arbitrary.domain.org

• We associate multiple GSSAuthNames with the
posixAccount
– Kerberos V: joe@ANYTHING.ORG
– PKI: OU=US, OU=State, OU=Arbitrary Inc, CN=joe

GridNFS - Foreign Users

• Mapping of NFSv4 and GSS principal names to
UID/GIDs allows for mapping of foreign user and
group names.
– Start with a cross domain security relationship

• Kerberos cross realm, PKI CA certification path, etc
– Assign a local UID (posixAccount) and an NFS4Name to a

foreign user
– Associate their GSS principal(s) with the local UID via

GSSAuthName.
– Tested at Sandia National Labs

• NFSv4 provides GridNFS with flexible trust
virtualization.

NFSv4 Pseudo File System

• Unlike NFSv2/3 which exports volumes
• NFSv4 exports a virtual server root and read-only

pseudo file system
– onto which exported volumes are mounted as pseudo file

system leaves
– giving server control over the name space visible to the

client
• Clients mount ‘/’ and users traverse the pseudo file

system to reach exported volumes.

NFSv4 Pseudo File System

• ‘Normal’ Pseudo file system leaves are mount points
for volumes with data

• Pseudo file system leaves can also have no data,
but are re-direction points called referrals
– Used for global namespace construction and so never had

data mounted
– Left over from a file system migration

File System Redirection

• Client tries to access a referral
• Receives special error (“moved”)
• Retrieves fs_locations attribute (GETATTR)

– Value is list of {server, path} pairs giving location(s) of the
file system

• Client selects one
– Policy is effected by server in constructing the list
– and by client in making selection

NFSv4 Global Name Space

• NFSv4 allows the construction of a global
namespace for data management
– An AFS-like global or VO project namespace

• Client mounts /nfs/<NFSv4 domain>
– /nfs: on client file system
– <NFSv4 domain>: DNS SRV specifies server to mount

which exports the root of the NFSv4 domain namespace.

• User traverses /nfs/<NFSv4 domain>/foo/bar
– /foo/bar are served by NFSv4 Pseudo File System and

fs_locations redirection.

GridNFS and OSG

• Objective: Back OSG cluster with NFSv4, and run a

job in the future with secure NFSv4 file access.

– Installed Condor and OSG into Linux NFSv4 SPKM-3 only

exported file systems.

• Added LDAP entries and X.509 certificates for OSG daemons

– Provide a MyProxy server to store job-long renewable proxy

credentials

• Place user long-term GSI X.509 credentials in MyProxy

– Use our MGRID portal as a job scheduling interface.

GridNFS and Condor

• Submit a job through the portal to execute in the future

– Portal propagates proxy credentials to an execute node

– All jobs use Condor’s USER_JOB_WRAPPER

• Proxy credentials available to NFSv4

• Renews about-to-expire credentials via MyProxy

• Condor Integration - It’s all about credentials

– Proxy credential propagation is tied into File I/O mechanism

– Setup of a job’s stderr/stdout is done by the daemon process

• Lacks necessary credentials.

WAN Performance

• NFS4.0 WAN performance superior to NFSv3, AFS
– File delegations

• NFSv4.1 pNFS removes single client to single server
bottleneck
– Divides NFSv4 into control and data paths
– Client can stripe I/O across multiple storage devices
– Common client for previously proprietary file systems

• Parallel NFS provides high performance secure file
system access

pNFS Architecture

Parallel NFS

• pNFS Client storage protocols
– File (NFSv4.1)
– Object
– Block (SCSI)
– Other

• Server management protocol not specified
– Correct NFSv4 behaviour is specified.

• Normal I/O through pNFS server always available
– Used for low bandwidth requests, failure recovery, etc.

Parallel NFS

• Linux pNFS generic client and server implementation
– API for opaque storage type specific payloads
– Client: API to storage type module
– Server: API to exported pNFS file system

• File system does most of the work

• NFSv4.1 minor version draft under intense review
– Sessions (required) and pNFS interoperability tested at

Austin Bakeathon, June 11-15th
• Cross storage protocol data transfer accomplished

– Linux pNFS client copied data between Object and File data
stores.

WAN Performance “Smoke” Testing

• UMICH campus 10Gbit net
– Part of the Ultralight network

• pNFS client with 10Gbit NIC
• 8 node GPFS pNFS server cluster with 1Gbit NICs

– FC attached storage - 3 to 4 year old equipment
• Both run Linux pNFS file storage protocol (NFSv4.1)
• iozone tests with increasing stripe size

– From 1 to 5 storage servers
– No tuning.

• Read and write throughput increased linearly
– Read: 0.75 to 4.0 Gbits/sec
– Write: 0.43 to 1.2 Gbits/sec

Current pNFS WAN Testing

• Repeating tests across UMICH 10Gbit network
• Run same tests from CERN

– Ultralight network
– Mirrored client hardware at UMICH and CERN

• Tuning client and server
• Comparative tests with GridFTP
• MPI Cluster to cluster testing

– Copy data from clusters across the WAN
– Clusters using different storage protocols are of interest

• Looking for partners

MPI and pNFS Exported Clusters

pNFS: Embraced by Industry!

• NFSv4.1 storage protocol
– Linux and Solaris Client
– Solaris, IBM GPFS, dCache, Linux Server

• Object storage protocol
– Linux client
– Linux server exporting Panasas pNFS file system

• Block storage protocol
– Linux client
– EMC server exporting pNFS file system

• Other pNFS implementations underway
– I’m sure this is an incomplete list…..

Conclusion

• GridNFS and pNFS combine and integrate
standard Internet protocols, promising
compatibility with standards-compliant desktop
and enterprise network services.

Questions?

http://www.citi.umich.edu

