DISCOVERY: THEORY \& EXPERIMENTS HAND IN HAND
 My favorite examples (and work): From Kinematics to Dynamics

EX 1: MASS \& MISSING MASS

$\mathrm{m}^{2}(a b)=2 p_{a} p_{b}\left(1-\cos \theta_{a b}\right) \quad \mathrm{m}_{T}^{2}(e \nu)=E^{2}-p_{T}^{2}=2 p_{T}^{e} p_{T}^{\nu}\left(1-\cos \phi_{e \nu}\right)$

$$
h \rightarrow Z Z^{*} \rightarrow \ell^{+} \ell^{-} \nu \bar{\nu}
$$

What about

$$
\rightarrow W W^{*} \rightarrow \ell^{+} \ell^{-} \nu \bar{\nu}
$$

$$
m_{T}^{2}(\text { cluster })=\left(E_{\text {Tlौ }}+E_{\text {Tmiss }}\right)^{2}-\left(\vec{p}_{\text {Tlौ }}+\vec{p}_{\text {Tmis }}\right)^{2}
$$

ZZ* mode sharper than WW* mode proposed in 1987

Now, $p p \rightarrow X+\chi^{0} \chi^{0} \rightarrow X+E_{T}($ miss $)$ very hard to get the mass!

$$
\begin{aligned}
& p p \rightarrow X+\chi^{0} \chi^{0} \rightarrow 1 \text { jet }+E_{T}(\text { miss }) ~ h \\
& p p \rightarrow \tilde{f} f^{*} \rightarrow f \bar{f} \chi^{0} \chi^{0} \rightarrow 2 \text { "jet" }+E_{T}(\text { miss })
\end{aligned}
$$ hopeless!

Energy end-point, $\mathrm{M}_{\mathrm{T} 2}, \ldots \quad$ proposed in 1997, 1999
If, $p p \rightarrow Z^{\prime} \rightarrow \tilde{f} f^{*} \rightarrow 2$ "jet" $+E_{T}$ (miss) and knowing M_{Z} $e^{+} e^{-} \rightarrow \tilde{f} f^{*} \rightarrow 2$ "jet" $+E_{T}$ (miss)
"Antler kinematics": Antler

proposed in 2009

Cascade decays:

$\frac{\text { Cascade Type I }}{3}$

EX 2: ASYMMETRIES

LHC (unlike Tevatron) has symmetric beams, so it is not simple to define an asymmetry.

For forward-backward asymmetry (parity property), we can define the quark along the boost direction. $y \sim \frac{1}{2} \ln \frac{x_{1}}{x_{2}}$
For CP asymmetry, it should be compared with $\bar{p} \bar{p}$ collider!
This is avoided if we can identify a CP-even process, and define a CP-old variable:
$h \rightarrow Z Z^{*} \rightarrow e^{+} e^{-} \mu^{+} \mu^{-} \quad$ proposed in 1993
$A_{C P} \sim\left(\vec{p}_{-} \times \vec{p}_{+} \cdot \vec{k}_{-}\right)\left[\left(\vec{p}_{-} \times \vec{p}_{+}\right) \cdot\left(\vec{k}_{-} \times \vec{k}_{+}\right)\right]$.

What about $q \bar{q} \rightarrow W^{+} W^{-}, \chi^{+} \chi^{-} \rightarrow \mu^{+} \mu^{-}+E_{T}$ (miss)

$$
\left(\vec{p}_{f} \times \vec{p}_{\vec{f}}\right) \cdot \vec{p}_{q} . \quad\left(\vec{p}_{f} \times \vec{p}_{f}\right) \cdot \hat{p}_{q} \operatorname{sgn}\left(\left(\vec{p}_{f}-\vec{p}_{f}\right) \cdot \hat{p}_{q}\right) . \quad \text { proposed in } 2009
$$

What about $q \bar{q} \rightarrow \tilde{t t^{*}} \rightarrow b \bar{b}+\ell^{+} \ell^{-}+E_{T}$ (miss)
In anticipation of discovery, a lot theory work to do!

