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Discovery:�
Theory & Experiments hand in hand

My favorite examples (and work):	

From Kinematics to Dynamics	
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Ex 1: mass & missing mass
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FIG. 2. Distribution versus two-body transverse mass Mz(Z&, Zz) for H~(I+l )(vv) events in pp collisions at &s =40 TeV, with
(a) mH =200 GeV and (b) mH =600, 800, 1000 GeV; a rapidity cut ! r) &4.5 is itnposed, nominally, but does not visibly affect the
cross section. Solid curves denote the Higgs-boson signal. The dashed curve denotes the background from qq~ZZ.

Figure 2 compares the Higgs-boson MT(Z„Zz) signal
with background for mH ——200 GeV (where gluon fusion
dominates the production and the total background is
small) and also for mH ——600, 800, and 1000 GeV, with a
nominal rapidity cut ! r)! &4.5 which is numerically in-
distinguishable from no cut. This figure illustrates how
the difhculties increase with increasing mass, due to the
strongly increasing width given in Eq. (2). For r «1, the
total width reduces to the simple form, I H = (3GF /

16~+2)mH .
Figure 3 shows the eFects of various assumed Gaussian

measurement errors on gfT in each of the two transverse
directions: (A) cr„=o~=25 GeV, (B) o„=o~=50 GeV.
It appears that gfT smearing of this order would not have
serious consequences for Higgs-boson masses of 600 GeV
or more, since these states are already rather broad; how-
ever, such smearing is damaging to the signal when it is
comparable with the Higgs-boson width.
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FIG. 3. Distribution versus two-body transverse mass MT(Zl, Z2) for H~(I+I )(vv) events in pp collisions at &s =40 TeV, with
the rapidity cut ! g! &4.5: (a) the case mH =200 GeV and (b) the case mH ——600 GeV. Solid curves denote the Higgs-boson signal for
two different possible measurement errors on p'r .. (A) o, =a~ =25 CJeV and (8) o, = cr~ = 50 GeV. The dashed curve denotes the back-
ground from qq ~ZZ.

h! ZZ⇤ ! `+`� ⌫⌫̄

!WW ⇤ ! `+`� ⌫⌫̄

m2
T (cluster) = (ET `` + ETmiss)2 � (~pT `` + ~pTmis)2

ZZ* mode sharper	

than WW* mode	


	

proposed in 1987	


(proposed in 1988)	
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Now, 	


proposed in 2009	


pp! X + �0�0 ! X + ET (miss) very hard to get the mass! 	

pp! X + �0�0 ! 1 jet + ET (miss) hopeless! 	

pp! f̃f⇤ ! ff̄ �0�0 ! 2 “jet” + ET (miss)

Energy end-point, MT2 , …	
 proposed in 1997, 1999	


If, 	
 pp! Z 0 ! f̃f⇤ ! 2 “jet” + ET (miss)
e+e� ! f̃f⇤ ! 2 “jet” + ET (miss)

and knowing MZ’ 	


“Antler kinematics”: 	
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FIG. 2: Normalized differential decay rates versus the invari-
ant mass of Maa for various combinations of masses as given
in Table I. The vertical lines indicate the positions of the
cusps in each Maa distribution.

visible particles (say a1) and the pair c.m. moving direc-
tion in their c.m. frame. We show these distributions in
Figs. 2 and 3. The distributions have, in addition to the
end points, unique geometrical structures, the cusps (de-
noted by vertical lines), which carry direct information
on mB and mX .

A cusp is the point where two curves with different
slopes meet. Cusps in the antler decay have outstanding
merits for determining the missing particle mass: (i) a
cusp is experimentally easy to identify due to its pointed
feature; its sharpness depends on the mass spectra of the
particles involved; (ii) looking for a cusp is statistically
advantageous since it has large (in most cases, maximum)
event rate; (iii) cusps can determine both the masses
of the intermediate particle B and the missing particle
X ; (iv) there is no combinatoric complication due to its
simple decay topology; (v) spin correlations of the decay
processes do not change the position of the cusps.

The peak features of the cusps arise from the differ-
ent origins for the Maa and cosΘ distributions. Roughly
speaking, the triangular shape of the Maa distribution
comes from folding diagonally the flat distribution of
d2Γ/d cos θ1d cos θ2, where θ1 and θ2 are the scattering
angles of two visible particles, and Γ the partial de-
cay width. Reorganized along Maa, the two apexes of
the triangle at both ends correspond to Mmin

aa and Mmax
aa ,

while the middle apex corresponds to the cusp. The
largest overlapping area below the middle apex explains
the largest phase space density. In the distribution of
cosΘ, the on-shell mass condition allows only a limited
range of cosΘ. Since the Jacobean factor leads to a steep
increase at the end points, we have a cusp feature in the
cosΘ distribution. We will leave the details to a future
work [9].

Cusp and Edge in Maa Distribution. We first only show
the phase space distributions for on-shell particles. It is
convenient to use the rapidities: the rapidity η of particle
B and the rapidity ζ of particle a in the rest frames of
their parents D and B, respectively. In terms of the mass
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FIG. 3: Normalized differential decay rates versus cosΘ in
the D-rest frame (solid curves) and in the pp lab frame with
√

s = 14 TeV. The parameters of Mass I and Mass III are
given in Table I.

parameters, the rapidities η and ζ are given by

cosh η =
mD

2mB
≡ cη, cosh ζ =

m2
B − m2

X + m2
a

2mamB
≡ cζ .

Here and henceforth we use a shorthanded notation of
cx ≡ coshx. Obtaining the rapidities would be thus
equivalent to measuring the masses mB and mX .

(1) ma = 0 case: Consider a to be massless first for
simplicity. One would naively expect the invariant mass
to have an end-point Mmax

aa = mD − 2mX . However,
due to the on-shell constraint for B, we find a different
end-point:

Mmax
aa = mB

(

1 −
m2

X

m2
B

)

eη . (2)

In addition, the Maa distribution has a cusp at

M cusp
aa = mB

(

1 −
m2

X

m2
B

)

e−η. (3)

This is remarkable since the ratio Mmax
aa /M cusp

aa = e2η

is governed by the initial decay D → BB and thus gives
mB. The product Mmax

aa M cusp
aa depends on the secondary

decay B → aX and gives mX . Furthermore, dΓ/dMaa is
of the form

dΓ

dMaa
∝











2ηMaa, if 0 ≤ Maa ≤ M cusp
aa ;

Maa ln
Mmax

aa

Maa
, if M cusp

aa ≤ Maa ≤ Mmax
aa .

(4)

Figure 2 shows dΓ/dMaa for four sets of representa-
tive masses specified in Table I. The choice of the pa-
rameters for Mass I is motivated by the Z(2) decay in
the UED model [7]. Since the two subsequent decays
Z(2) → L(1)L(1) and L(1) → $γ(1) occur near the mass
threshold, Mass I is to be called the “near threshold
case”. For comparison, we consider the mass parame-
ters with sizable gap in Mass III, the “large mass gap
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of the form
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(4)

Figure 2 shows dΓ/dMaa for four sets of representa-
tive masses specified in Table I. The choice of the pa-
rameters for Mass I is motivated by the Z(2) decay in
the UED model [7]. Since the two subsequent decays
Z(2) → L(1)L(1) and L(1) → $γ(1) occur near the mass
threshold, Mass I is to be called the “near threshold
case”. For comparison, we consider the mass parame-
ters with sizable gap in Mass III, the “large mass gap
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Ex 2: Asymmetries
LHC (unlike Tevatron) has symmetric beams, 	

so it is not simple to define an asymmetry.	


For forward-backward asymmetry (parity property), 	

we can define the quark along the boost direction.	


For CP asymmetry, it should be compared with      collider!	
p̄p̄

This is avoided if we can identify a CP-even process, 	

and define a CP-old variable:	


4

any experimental analysis. In previous studies these two
angles have typically been integrated over.

Although we have tried to conform to the literature in
our parametrization of the decay angles, we note that the
literature itself is divided over the choice of which decay
plane orientation corresponds to �=0 rather than �=⇡.
We conform to the convention of Buszello et al. [29],
which is opposite to that of Djouadi [4] and Bredenstein
et al. [36].
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FIG. 1: The Cabibbo-Maksymowicz angles [37] in the H !
ZZ decays.

The decay amplitudes defined in the next section de-
pend on two combinations of the boost parameters �1
and �2, defined by

�a = �1�2(1 + �1�2) , (5)

�b = �1�2(�1 + �2) , (6)

which are in fact just the cosh and sinh of the rapidity
di↵erence of Z2 and Z1, such that

�2
a � �2

b = 1 . (7)

More explicitly, we have

�a =
1

2m1m2

�
m2

H � (m2
1 +m2

2)
�
. (8)

III. COUPLINGS AND ANGULAR
DISTRIBUTIONS

A. General couplings to ZZ⇤

The vertex Feynman rules for the most general cou-
pling of a spinless particle to the polarization vectors ✏µ1
and ✏↵2 of two Zs of four-momenta p1 and p2 are given
by the expression:

Lµ↵ = X gµ↵� (Y + i Z)
k↵kµ
M2

Z

+(P + iQ) ✏µ↵
p1p2
M2

Z

, (9)

where we have suppressed repeated indices in the con-
traction of the four-index ✏ tensor, k=p1 + p2 and only
Lorentz-invariance has been assumed. The dimensionless

form factors X to Q are functions of k2 and p1 ·p2 which,
with no loss of generality, can be taken to be real (but
for their absorptive parts, expected to be perturbatively
small). The rescalings by 1/M2

Z are just for definiteness,
since the true mass scale of the underlying operators is
as yet unspecified. In practice we also remove an overall
factor of igMZ/cos ✓W , so that X=1 corresponds to the
tree level coupling of a SM Higgs boson.
Similarly, the most general vertex describing the cou-

pling of a spin J=1 particle to two Z-polarizations (in-
dices µ and ↵, momenta p1 and p2, respectively) and to
its own polarization (index ⇢) is:

L⇢µ↵ = X (g⇢µ p↵1+g⇢↵ pµ2 ) + (P+iQ) ✏⇢µ↵(p1�p2), (10)

again with X, P and Q real.
The most general parity-conserving vertex describing

the coupling of a J=2+ particle of polarization tensor ✏⇢�

to our two vector bosons is:

L⇢�µ↵ = X0 m
2
H gµ⇢ g↵�

+(X1 + i Y1) (p
↵
1 p⇢2 g

�µ + p⇢1 p
µ
2 g

�↵)

+(X2 + i Y2) p
⇢
1 p

�
2 g

µ↵, (11)

where we have dropped contributions that have more
than two derivatives or are odd under parity, and again
with all coe�cients real. The special case of tree level
graviton-like couplings corresponds to

X0 = �1

2
 , X1 =  , X2 = � , (12)

with all other coe�cients vanishing and  an overall cou-
pling strength.
These general couplings, with naive mass dimensions

d = 3, 4, and 5, can arise from SU(2)L ⇥ U(1)Y invari-
ant operators of dimension 5, 6, or higher. Since, for
HLLs with non-vanishing weak charges, this parentage
introduces model dependence, we relegate it to a brief
discussion in Appendix A.

B. ‘Pure’ cases of specified JPC

We specify in this section the results for four cases
(scalar, pseudoscalar, vector and axial vector) that would
be ‘pure’ in the sense of having a single dominant term in
their HZZ couplings, which we use to define their spin
and parity. This allows one to illustrate the mass and
angular dependences of the predictions, setting the stage
for the later discussion of the impure cases for which P
and/or CP are not symmetries of the theory, and to es-
tablish comparisons with the existing literature (but for
the ZZ⇤ case for J=1, which we have not found else-
where).
The general expressions for the angular correlations in

the ZZ⇤ case (which includes ZZ when the two Z masses
are fixed at MZ) are given in Appendices C and D, where

⌘ ⌘ 2 cv va
(c2v + c2a)

' 0.15, (13)

which is folded with the Z decay amplitudes to produce the event distribution. The CP–odd,
CPT̂ –even combinations are ρ+

− − ρ−
+ and ρ0

+ − ρ0
− + ρ−

0 − ρ+
0 while the ones that are CP–

and CPT̂–odd are ρ+
+ − ρ−

− and ρ0
+ − ρ0

− − ρ−
0 + ρ+

0 . Only the first two are relevant to our
discussion below.

Similar notation will be used for the modes of W+–W−.

III. CP VIOLATING OBSERVABLES

We will show observables which are related to the CP–odd correlations among the mo-
menta, "k−,"k+, "p− and "p+. To simplify our discussion, we start with the purely leptonic case
and we arbitrarily label the lepton pair from one of the Z bosons with primes. The process
Z → ll̄ can be parametrized by the vertex

i e ū(l)γµ(cLL + cRR)v(l̄) .

Naively one may simply construct the CP–odd correlation Oodd = "p−× "p+ ·"k− in the H rest
frame. It can also be written in a Lorentz invariant form

Oodd = −M−1
H ε(p−, p+, k−, k+) .

However, as we will show later, the expectation value of this observable 〈"p− × "p+ · "k−〉 is
proportional to cV cA where cV = 1

2(cL + cR) and cA = 1
2(−cL + cR) are the vector and axial

vector couplings of the Z boson. Since the vector coupling of the Z boson to the charged
leptons in the Standard Model is relatively small, this observable turns out to be rather
unimportant. It can be understood as the consequence of an approximate symmetry when
the vector coupling (or the axial vector coupling) is ignored completely, so that there is no
distinction between l+ and l− as far as the Z boson is concerned. Therefore the differential
decay rate is symmetric under two separate partial charge conjugation symmetries, Ĉ1 and
Ĉ2. Symmetry Ĉ1 interchanges l+ and l− while leaving l′+, l′− unchanged; while the sym-
metry Ĉ2 interchanges l′+ and l′− and leaving l+, l− unchanged instead. The usual charge
conjugation operation C is the product of the the two Ĉ’s. It is easy to check that the
correlation Oodd is odd under either Ĉ1 or Ĉ2. Therefore it has nonvanishing expectation
value only when both cV and cA couplings are nonzero. It is certainly more desirable to
use an observable which is CP–odd but even under each Ĉ1 or Ĉ2. It is not too difficult to
construct a quantity. A possibility is

O′

odd = ("p− × "p+ · "k−)[("p− × "p+) · ("k− × "k+)]. (6)

It is easier to understand these angular correlations in the geometry of the reaction. A
typical reaction is shown in Fig. 1. Under CP transformation, (Ep−, Ek−

, φ) is transformed
into (Ep+

, Ek+
,−φ). If one defines a plane using the cross product of one of the lepton pairs,

say "p−×"p+, as the direction of the normal vector, the configurations with the momentum of
the other lepton (k−) coming out of the plane is the CP conjugate of the configurations in
which k− is going into the plane. Therefore the asymmetry, 〈sign(Oodd)〉, can be interpreted
as a kind of up-down asymmetry. More explicitly, define the polar and azimuthal angles for
the two leptons in their respective Z boson rest frames to be θ, φ for l("k−), and θ′, φ′ for
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h! ZZ⇤ ! e+e� µ+µ�

ACP ⇠

What about 	
qq̄ !W+W�, �+�� ! µ+µ� + ET (miss)

the top-quark sector [4, 5, 6, 7], and in SUSY for a scalar top [8]. Most of the studies have been
concentrated on T̂ -odd observables [7, 8], with some of them also considering CP-odd observables
in specific context [4, 5, 6].

In this Letter, we discuss a general approach to construct genuine CP-odd observables at the
LHC. We consider simple but common systems that involve initial state partons. We present the
general discussion in section II, and show the illustrating example in section III. The section IV is
devoted to the conclusion.

II. CP-ODD OBSERVABLES AT THE LHC

To construct genuine CP-odd observables at the LHC, we propose to study an exclusive final
state

f f̄ + X0, (3)

where f is any charged particle(s) that can be kinematically reconstructed, f̄ is its charge conjugate,
and X0 is any particle(s) with neutral quantum numbers like charge, baryon and lepton numbers.
With this event specification, the initial states must be from the partons with neutral quantum
numbers like qq̄ or gg.

To avoid the ambiguity due to the longitudinal boost between the partonic center-of-mass frame
and the lab frame, we wish to seek for kinematical observables involving only the quantities that
are invariant under the longitudinal boost, such as transverse components of the momenta, and
the direction of longitudinal momenta difference. The simplest observables are the difference of
the transverse momenta, or equivalently the transverse energies,

p+
T − p−T or E+

T − E−
T , (4)

where pT =
√

p2
x + p2

y, ET =
√

p2
T + m2

f , with ± specifying the charged particle. This observable is

CP-odd but T̂ -even. Both CP-violating phase θ and CP-conserving phase δ are needed to generate
such observables. It would be sizable only if there is a large CP-conserving phase shift in the final
state interactions [4].

The next commonly used CP-odd variable is the triple product of the three-momenta,

(#pf × #pf̄ ) · #pq. (5)

This is a T̂ -odd variable, and is generated by CP-violation in the dispersive amplitude. Since the
momentum direction of the initial quark has the ambiguity with respect to which proton it is from,
this observable cannot be directly used at the LHC. We thus consider a combination

(#pf × #pf̄ ) · p̂q sgn((#pf − #pf̄ ) · p̂q). (6)

The factor (#pf − #pf̄ ) · p̂q helps keep track of the momentum directions, and it is the sign of it that
is involved in this definition, which is invariant under a longitudinal boost. The advantages of this
variable are (1) it is a CP-odd and T̂ -odd so that no CP-conserving phase is needed for it to be
generated; (2) it involves the quark momentum direction p̂q twice so that it renders the specification
of the direction irrelevant. Therefore, we could even simply fix the direction of the initial parton
momentum along with a proton beam ẑ, without changing its nature of transformation.

One could view this variable as a dot-product to define a polar angle by cos Θ of the #pf × #pf̄

vector with respect to the beam direction ẑ. CP violation should thus manifest itself in the angular
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the direction of longitudinal momenta difference. The simplest observables are the difference of
the transverse momenta, or equivalently the transverse energies,

p+
T − p−T or E+

T − E−
T , (4)

where pT =
√

p2
x + p2

y, ET =
√

p2
T + m2

f , with ± specifying the charged particle. This observable is

CP-odd but T̂ -even. Both CP-violating phase θ and CP-conserving phase δ are needed to generate
such observables. It would be sizable only if there is a large CP-conserving phase shift in the final
state interactions [4].

The next commonly used CP-odd variable is the triple product of the three-momenta,

(#pf × #pf̄ ) · #pq. (5)

This is a T̂ -odd variable, and is generated by CP-violation in the dispersive amplitude. Since the
momentum direction of the initial quark has the ambiguity with respect to which proton it is from,
this observable cannot be directly used at the LHC. We thus consider a combination

(#pf × #pf̄ ) · p̂q sgn((#pf − #pf̄ ) · p̂q). (6)

The factor (#pf − #pf̄ ) · p̂q helps keep track of the momentum directions, and it is the sign of it that
is involved in this definition, which is invariant under a longitudinal boost. The advantages of this
variable are (1) it is a CP-odd and T̂ -odd so that no CP-conserving phase is needed for it to be
generated; (2) it involves the quark momentum direction p̂q twice so that it renders the specification
of the direction irrelevant. Therefore, we could even simply fix the direction of the initial parton
momentum along with a proton beam ẑ, without changing its nature of transformation.

One could view this variable as a dot-product to define a polar angle by cos Θ of the #pf × #pf̄

vector with respect to the beam direction ẑ. CP violation should thus manifest itself in the angular

3

proposed in 2009	


proposed in 1993	


What about 	
qq̄ ! t̃t̃⇤ ! bb̄ + `+`� + ET (miss)

In anticipation of discovery, a lot theory work to do!	
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