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◮ Measuring the EDM of the electron is discussed, both on its
own merits and as prototype for proton EDM measurement.

◮ An all-electric lattice for measuring the electron EDM at its
“magic” globally frozen spin kinetic energy of K = 14.5MeV
is described.

◮ More to be emphasized is a new scheme using RF excitation
in a magnetic ring, with K = 440MeV electrons and resonant
polarimetry. With spin tune Qs = 1, the beam beam is frozen
locally, but not globally.



The All-Electric Brookhaven AGS Analogue Ring



◮ While building the AGS at BNL, an all-electric “Electron
Analogue” ring was built (to study passage through
transition).

◮ Applying for funds in mid-1953, the approval, commissioning,
construction and machine studies had been accomplished in
less than two years.

◮ This is the closest prototype there has been to the all-electric
ring needed to “trap” protons to measure their electric dipole
moments (EDM).

◮ I have reverse engineered the lattice design and simulated its
performance using the new ETEAPOT code. Results are
compared with measurements performed on the ring in 1955.



◮ The original motivation for studying the BNL electric ring was
to develop a test bed for simulations designed to handle
electric (as contrasted with magnetic) elements.

◮ But the study has suggested a more substantial application.

◮ The AGS Analogue used electrons instead of protons, and was
limited to achievable electric field. Cost minimization led to
10 MeV as maximum energy and bend radius of 4.7 m.

◮ These are the same considerations that will fix the parameters
of an all-electric proton EDM ring.



◮ The “Conceptual Design Report” for the AGS Analogue
electron ring was a four page letter from BNL Director
Haworth to A.E.C. (predecessor of D.O.E) Director of
Research Johnson, applying for funding. The first three pages
are reproduced next.

◮ Then a 1955 report by Ernest Courant contains the
experimental data to be simulated.

◮ New (ETEAPOT) code has been used to simulate (old)
Courant observations.



Historical BNL Documents









◮ Tune scans, Courant, BNL report EDG-20, July, 1955
◮ Heavy lines.....regions with no beam.......integer resonance
◮ Dots............narrow disruption..........half integer resonance
◮ Qx=8/Qy=8;......stop bands.................superperiodicity 8
◮ The nominal central tunes values are (Qx ,Qy ) = (6.5, 6.5).
◮ Remember this figure!



Reconstructed AGS-Analogue Lattice

The lattice description file E AGS Analogue2.adxf for this lattice
is in Appendix C.3, “The AGS-Analogue Lattice File in ADXF
Form”, of the full report.
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Simulation of 1955 Machine Studies Tune Plane Scan
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◮ Boxes mark points on stable diamond about (Qx ,Qy ) = (6.5, 6.5).
◮ Points lying on 1/2 integer resonance lines are indicated by dots.
◮ Superperiodicity bands at Qx = 8 or Qy = 8
◮ This figure is to be compared with the Courant tune scan figure.



◮ Dead-reckoned tunes came out within 10% of nominal.

◮ For the eventual proton EDM ring the vertical tune has to be
reduced to Qy ≈ 0.2. This will amplify the electric/magnetic
differences.

◮ Comparison between all-magnetic and, otherwise identical,
all-electric lattices are contained in the full report, for tune
values (Qx ,Qy ) = (6.2, 2.25).

◮ The electric/magnetic difference is small, but big enough for
Qy = 2.25 to be the lowest I have obtained so far. Just
switching from magnetic to electric without compensating
typically causes a stable lattice to become unstable.



Resonant Polarimetry



◮ Magnetic Resonance and Beam-Beam Polarimetry for Frozen
Spin Storage Rings, dated October 13, 2012 describes the use
of a high-Q resonator to measure the proton EDM.

◮ Q-value and fields confirmed by Valerie Shemelin using
Microwave Studio.

◮ This polarimetry is challenging for protons, even using very
low temperature cryogenics. The signal to noise ratio for a
one hundred percent longitudinally polarized beam of nominal
intensity would be about 50 to 1 for protons.

◮ The method will be far more effective for electrons since the
electron magnetic dipole moment is a thousand times greater
than the proton’s.

◮ For electrons one expects to be sensitive to EDM-induced
polarization tilts of less than one milliradian.



◮ The resonator gap heights are greatly exaggerated
◮ Though shown as vacuum in the figure, the gaps will actually

be filled with low loss saphire.
◮ Q-values of about 1010 (far higher than necessary for

electrons, though not for protons) are achievable at low
temperature.

wc

gc

lc

σb
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z

polarized electron bunch



◮ End view of polarimeter and readout using a low temperature
pHEMT transistor such as Agilent type ATF-35143 in a
source follower circuit.

◮ Coaxial magnetic read-out is also possible.

gc

Rc

superconductor

sapphire

Figure: Polarimeter readout.



◮ Unlike p-carbon polarimetery, resonant polarimetry is passive,
and measures longitudinal rather than transverse polarization.

◮ A more important distinction is that the resonant polarimeter
measures the coherent sum of polarizations of all bunches, in
both beams.

◮ Deviation from null does not incur the counting-statistics
penalty of scattering asymmetry measurement.



Electron Lattice Spin Tunes



Figure: Electron spin tune QsE in electric storage ring.



Figure: Electron spin tune QsM in a magnetic ring.



Table: Some frozen spin electron EDM storage ring options. “P/UP” stands for “polarized/unpolarized”. There are also
extracted beam polarimeter options.

label strength bend kinetic spin magic source minimal RF polarimetry
radius energy tune gamma of EDM bunch period- or

r0 K0 Qs γm torque pattern icity comment

MV/m,T m MeV

All Electric, One Beam

eE1res

0 “ 5.0 14.5 0 “ “ 2e-(P) “ resonant

eE1Mol

0 “ “ “ “ “ “ 2e-(P) “ Möller

All Electric, Two Beams

eE2bb

0 3.0 MV/m 5.0 14.5 0 29.382 Er e-(P) + e(P or UP) arbitrary beam-beam
eE2res

0 “ “ “ “ “ “ e-(P) +e -(P or UP) “ resonant

All Magnetic, One Beam

eM1res

1 (1) 0.734 T 2.0 440 1 862 Ez e-(P) 2 resonant
eM1res

1 (2) “ “ “ “ “ “ 2e-(P) 2 resonant

All Magnetic, Colliding Beams

epM21unp 0.734 T 2.0 440 1 862 Ez e-(P) + e+(UP) 2 elec. posit.
epM21pol “ “ “ “ “ “ e-(P) + e+(P) 2 pol. posit.



Table: Electron EDM storage ring parameters-continued. Some of the parameter values are little better than guesses.

label number of ǫx ǫx damping polar. good bad luminos- energy loss critical
particles injection SR equilib. time time luminosity city lifetime per turm energy

m m s s /cm2/s s keV eV

All Electric, One Beam

eE1res

0

eE1mol

0

All Electric, Two Beams

eE2bb

0

eE2Mol

0

All Magnetic, One Beam

eM1res

1 (1) ∼ 10−8
∼< 10−8

∼ 0.033 ∼ 47700 1.66 94
eM1res

1 (2) “ “ “ “ “ “

All Magnetic, Colliding Beams

epM21unp ∼ 0.033 ∼ 47700
epM21pol “ “



Electron EDM Lattice Schematics
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Figure: An all-electric colliding beam storage eE20 ring for measuring
the electric dipole moment of the 14.5MeV electrons. The radius could
be significantly smaller.
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Calculation of EDM-Induced Spin Precession



◮ To suppress magnetic dipole moment (MDM) effects it is
essential to use deviation from null experiments. i.e. Any
purely MDM signal cancels in the polarimeter.

◮ For proton-carbon (which measures transverse polarization)
any left-right counting rate asymmetry is ascribed to EDM (or
spurious EDM) effect.

◮ Resonant polarimeter is passive (no particles are wasted) but
it measures longitudinal polarization. This limits the storage
ring possibilities.



◮ For spin tunes other than Qs = 0 the EDM-effect over the full
ring would vanish for uniform magnetic field B .

◮ RF acceleration modulates the energy (with no net change)
and correspondingly B , synchronized with the frozen spin
pattern.

◮ There is a net torque causing a systematic, EDM-induced
precession that can be measured using resonant longitudinal
polarimeters.

◮ The EDM effect is proportional to the RF amplitude Vrf .



◮ The EDM-induced precession over one turn is

∆ΘEDM,B = d̃ 2πr0,B Bave

1

π

cpmax − cpmin

cpave

,

◮ cpmax, cpmin and cpave are maximum, minimum and average
momenta in the arcs.

◮ The precession imbalance is proportional to the magnetic field
modulation, which is proportional to the momentum
modulation.

◮ One sacrifices an absolute rate “mismatch penalty”,

M.P. =
1

π

cpmax − cpmin

cpave

,

in exchange for enabling longitudinal polarimetry, and for
cancelling spurious MDM-induced precession due to external
fields.



◮ Who says anomalous magnetic moments are “anomalous”?

electron magneton ≡ µe = 5.78838175 × 10−5 eV/T,

Ge = 0.001159652,

Geµe

~
= 1.020 × 108s−1/T

proton magneton ≡ µp = 3.1524512 × 10−8 eV/T,

Gp = 1.792847356,

Gpµp

~
= 0.859 × 108s−1/T

◮ Curiously similar precession rates of e and p spins in magnetic
field !



◮ Define a nominal EDM of 10−29 e-cm by the product dnomc
(because E and B have different units);

dnomc

~
=

10−29 × (0.01) × 3 × 108

6.58 × 10−16
= 4.56×10−8 eV/T. (1)

◮ Relative-effectiveness ratio, EDM/MDM is about 0.5 × 10−15.



◮ Relative precession task: Distinguish EDM-induced
precession from spurious, wrong-plane, MDM-induced,
precession. (Especially for electrons) this is probably the
dominant source of EDM measurement error.

◮ Absolute precession task: For a pure Dirac particle in a
magnetic field the precession is 2π per turn. For an eM21 case
with revolution frequency of 10 Mhz, this is 0.63 × 108 r/s.

◮ Applying the 0.5 × 10−15 ratio mentioned above, for globally
frozen spin one has to plan on measuring a “nominal”
EDM-induced precession of order 10−7 r/s, or about
10 mr/day.

◮ For anticipated longitudinal polarimetry this is about ten
sigma per day, for EDM of 10−29 e-cm.



◮ The current upper limit for the electron EDM (obtained from
the EDM of thallium atoms, corrected up by a factor of 585
to account for induced polarization) is about 100 in our
nominal 10−29 e-cm EDM units, giving an EDM-induced
precession of order 10−5 r/s.

◮ At the advertised one milliradian polarimeter noise floor a
signal of this size would appear in 100 s.



Systematic Error Reduction Reversal Possibilities



◮ The only important longitudinal electric field is in the RF. It
contributes (very weakly) to the foreground EDM precession
signal and causes no MDM-induced precession.

◮ DC electric fields can be strongly suppressed.



◮ A radial magnetic field Br acting on the MDM mimics the
vertical magnetic field By acting on the EDM.

◮ There are no intentional radial magnetic fields Br .
Furthermore there can be no time-averaged value 〈Br 〉, since
this would cause secular vertical drift of the beam.

◮ But 〈Br 〉east and 〈Br 〉west can be equal and opposite to
produce 〈Br 〉 = 0.

◮ The experiment amounts to placing the beam polarization in
unstable equilibrium on a spin resonance. Froissart-Stora
scans can balance 〈Br 〉sector, sector by sector, to cause
precession much less than π per spin coherence time to, say
10−3 r/s. This is about 100 times as great as the precession
caused by 10−29 e-cm EDM.



◮ Reversing RF phase reverses EDM effect, but does not change
MDM effect (unless Br is proportional to By , which is likely
for internal, but not external, magnetic fields).

◮ Switching magnet polarity (beam circulation direction from
CW to CCW) will separate magnet-corollated from external
sources.

◮ Counter-circulating positrons are separated vertically by 〈Br 〉.
As in the all-electric proton ring, this plus high precision
measurement of vertical beam separation gives strong
protection against Br .

◮ Using partially-polarized positrons for Froissart-Stora scans to
cancel 〈Br 〉 may obviate the need for simultaneous
counter-circulating beams, and avoid the need for squid
magnetometer BPM’s.

◮ In the end one subtracts Vrf = 0 data from Vrf 6= data.



◮ The four-fold symmetric lattice (with twice as many RF’s) can
study both eM22 at 440 MeV and eM23 at 881 MeV.
Agreement between values at two energies would be powerful.

◮ Furthermore, with four-fold symmetry, more subtractions are
available for suppressing systematic errors.



◮ There are two, inequivalent initial polarization conditions:

◮ With initial beam polarization vertical everywhere,
longitudinal polarization can grow at the resonant polarimeter.
This is favorable for EDM measurement.

◮ Initial beam polarization horizontal. This is favorable for
set-up, but unfavorable for EDM because the EDM-induced
polarization is vertical and requires transverse polarimeter
which is unfavorable for electrons.
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