Snowmass EF subgroup: Flavor mixing and CP violation at high energy

Snowmass on the Mississippi July 29 - August 6, 2013

Marina Artuso, Michele Papucci, Soeren Prell (conveners)

Flavor and CP Violation at the EF

- our group looked into the sensitivity to New Physics through flavor- and/or CPviolating observables in high-energy systems
- original plan was to cover studies of
 - high-pt flavor-violating physics
 - "low-pt flavor-violating physics at high-energy experiments" (e.g. LHCb, ATLAS and CMS's contributions to flavor and CP violation in bottom, charm, tau physics, etc.)
- connect direct searches at high energy with indirect searches in low-energy systems and combine constraints on New Physics models

Low-energy measurements

- LHC b, c, τ results complementary to e⁺e⁻ super flavor factory experiments (Belle II)
- decided at CPM2012 that all sensitivity studies regarding bottom, charm and tau physics would take place in the Intensity Frontier (IF) subgroups
 - − BR($B_{(s)} \rightarrow \mu\mu$),
 - B \rightarrow K^(*)II differential distributions,
 - CPV in $B_s \rightarrow J/\psi \phi$,
 - D⁰ mixing and CPV,
 - τ LFV decays, etc.
- integrate estimated IF sensitivities together with EF results into constraints on NP models

Looked at IF projections: e.g. sensitivity of the upgraded LHCb experiment to key observables

Type	Observable	Current	LHCb	Upgrade	Theory
		precision	2018	$(50 {\rm fb}^{-1})$	uncertainty
B_s^0 mixing	$2\beta_s \ (B^0_s \to J/\psi \ \phi)$	0.10 [137]	0.025	0.008	~ 0.003
	$2\beta_s \ (B_s^0 \to J/\psi \ f_0(980))$	0.17 [213]	0.045	0.014	~ 0.01
2	$a_{ m sl}^s$	6.4×10^{-3} [43]	$0.6 imes 10^{-3}$	0.2×10^{-3}	0.03×10^{-3}
Gluonic	$2\beta_s^{\text{eff}}(B_s^0 \to \phi\phi)$	-	0.17	0.03	0.02
penguins	$2\beta_s^{\text{eff}}(B_s^0 \to K^{*0}\bar{K}^{*0})$	_	0.13	0.02	< 0.02
	$2\beta^{\text{eff}}(B^0 \to \phi K_S^0)$	0.17 [43]	0.30	0.05	0.02
Right-handed	$2\beta_s^{\text{eff}}(B_s^0 \to \phi \gamma)$	-	0.09	0.02	< 0.01
currents	$ au^{ eff}(B^0_s o \phi \gamma) / au_{B^0_s}$	-	5%	1%	0.2%
Electroweak	$S_3(B^0 \to K^{*0}\mu^+\mu^-; 1 < q^2 < 6 \text{GeV}^2/c^4)$	0.08 [67]	0.025	0.008	0.02
penguins	$s_0 A_{\rm FB}(B^0 \to K^{*0} \mu^+ \mu^-)$	25% [67]	6%	2%	7%
	$A_{\rm I}(K\mu^+\mu^-; 1 < q^2 < 6{ m GeV}^2/c^4)$	0.25 [76]	0.08	0.025	~ 0.02
	$\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-)/\mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)$	25% [85]	8%	2.5%	$\sim 10 \%$
Higgs	$\mathcal{B}(B^0_s \to \mu^+ \mu^-)$	1.5×10^{-9} [13]	$0.5 imes 10^{-9}$	0.15×10^{-9}	$0.3 imes 10^{-9}$
penguins	$\mathcal{B}(B^0 \to \mu^+ \mu^-) / \mathcal{B}(B^0_s \to \mu^+ \mu^-)$	-	$\sim 100 \%$	$\sim 35 \%$	$\sim 5\%$
Unitarity	$\gamma \ (B \to D^{(*)} K^{(*)})$	$\sim 10-12^{\circ}$ [243, 257]	4°	0.9°	negligible
triangle	$\gamma \ (B_s^0 \to D_s K)$	-	11°	2.0°	negligible
angles	$\beta \ (B^0 \to J/\psi \ K_{\rm s}^0)$	0.8° [43]	0.6°	0.2°	negligible
Charm	A_{Γ}	2.3×10^{-3} [43]	0.40×10^{-3}	0.07×10^{-3}	-
CP violation	ΔA_{CP}	2.1×10^{-3} [18]	$0.65 imes 10^{-3}$	$0.12 imes 10^{-3}$	1

Implications of LHCb measurements and future prospects, LHCB-PAPER-2012-031

Flavor as a High Mass Probe

No sign of new physics in low-energy mixing and CPV measurements

- New particles have large masses >>1 TeV
- 2. New particles have degenerate masses
- 3. Mixing angles in new sector are small, same as in SM (MFV)

\rightarrow	implies	constraints	on	NP
---------------	---------	-------------	----	----

Operator	Λ lower bound (TeV)	Observable
$\operatorname{Re}[(\overline{s}_L \gamma^{\mu} d_L)^2]$	$9.8 imes 10^2$	$K_L - K_S$ mass difference, Δm_K
$\text{Im}[(\overline{s}_L \gamma^{\mu} d_L)^2]$	$1.6 imes10^4$	CP violation in K_L decay, ϵ_K
$\operatorname{Re}[(\overline{s}_R d_L)(\overline{s}_L d_R)]$	$1.8 imes 10^4$	$K_L - K_S$ mass difference, Δm_K
$\operatorname{Im}[(\overline{s}_R d_L)(\overline{s}_L d_R)]$	$3.2 imes 10^5$	CP violation in K_L decay, ϵ_K
$\operatorname{Re}[(\overline{b}_L \gamma^{\mu} d_L)^2]$	$9.8 imes 10^2$	$B_L - B_S$ mass difference, Δm_B
$\text{Im}[(\overline{b}_L \gamma^{\mu} d_L)^2]$	$1.6 imes10^4$	CP violation in $B^0 \rightarrow J/\psi K_S$ decay
$\operatorname{Re}[(\overline{b}_R d_L)(\overline{s}_L d_R)]$	$1.8 imes 10^4$	$B_L - B_S$ mass difference, Δm_B
$\operatorname{Im}[(\overline{b}_R d_L)(\overline{s}_L d_R)]$	$3.2 imes10^5$	CP violation in $B^0 \to J/\psi K_S$ decay

Table 1-4. Lower limits on the size of representative dimension six loop diagram operators (Λ), taking the coefficients c_i equal to one. Adopted from Ref. [15].

e.g. Improvement on new physics in $B_{d,s}$ mixing with LHCb upgrade+Belle II+lattice at least ~1.5-2 on scale (very preliminary) 5

$$\mathcal{L}_{ ext{eff}} = \mathcal{L}_{ ext{SM}} + \sum rac{c_i^{(d)}}{\Lambda^{(d-4)}} \mathcal{O}_i^{(d)}$$

High-pT flavor physics

- Snowmass EF subgroups are well aligned with ATLAS and CMS physics analysis groups, except that there are no dedicated (high-pt) flavor & CP groups in ATLAS or CMS
- analyses of high-pt flavor-violating processes use the same methods and techniques as flavor-conserving processes
 - analyses and experts are scattered across several physics groups (top, SUSY, Exotics, Higgs)

Probing flavor and CPV @ EF

- Top and Higgs are already-discovered particles whose properties for flavor and CPV can be probed with next facilities → guaranteed target! (explored in other subgroups: top & Higgs)
- New particles:
 - mass spectrum contains important flavor information
 - other flavor information requires lots of statistics → in most of the cases it will be relevant only for early discoveries in the next LHC run

top flavor physics

- sensitivity studies for flavor-violating top decays have been coordinated by the EF top subgroup
 - -e.g. top FCNC
 - t \rightarrow Z q, t \rightarrow γ q, t \rightarrow g q, t \rightarrow H q can be measured at LHC and ILC with similar sensitivity and limits down to 10⁻⁵
 - single top production at ILC can provide constraints on FCNC BRs
- integrate top FCNC limits into constraints on NP models

Direct searches for flavorviolating decays of new particles

• Studies for probing flavor generically involve:

- flavor-conserving modes are studied in expt's top, SUSY, Exotics physics groups and covered by EF top and NP subgroups
- no measurements available on (suppressed) flavor-violating modes via "asymmetric" decay

Vector-like quarks

- Vector-like 3rd generation partners
 - dominant decays to 3^{rd} generation quarks T \rightarrow t Z, t h & T \rightarrow W b, B \rightarrow W t & B \rightarrow b Z, b h plus single VLQ production with dominant light quark coupling studied by ATLAS and/or CMS and looked into by EF top/NP groups

Experiment	Mode	Method	\mathcal{L}	Mass Limit	Reference
ATLAS	$Q \rightarrow Zq$	$Z(\ell \ell) + jets$	$1.04 {\rm ~fb^{-1}}$	>760 GeV	[19]
ATLAS	$Q \rightarrow Wq$	$W(\ell \nu) + \text{jets}$	$1.04 {\rm ~fb^{-1}}$	$>900~{\rm GeV}$	[19]
ATLAS	$T \rightarrow Zq$	$Z(\ell \ell) + jets$	$4.64 {\rm ~fb^{-1}}$	$>1080~{\rm GeV}$	[20]
ATLAS	$B \rightarrow Wq$	$W(\ell \nu)$ + jets	$4.64 {\rm ~fb^{-1}}$	$>1120~{\rm GeV}$	[20]
ATLAS	$X \to Wq$	$W(\ell \nu)$ + jets	$4.64 {\rm ~fb^{-1}}$	$>1420~{\rm GeV}$	[20]
CMS	$T \to Z t$	$Z(\ell \ell) + $ lepton	$1.14 {\rm ~fb^{-1}}$	$> 475 { m ~GeV}$	[21]
CMS	$T \to Z t$	ℓ , $E_T^{\text{miss}} + \text{jets}$	$5.0 {\rm ~fb^{-1}}$	$>625~{\rm GeV}$	[22]
CMS	$B \to W t$	ℓ , $E_T^{\text{miss}} + \text{jets}$	$5.0 {\rm ~fb^{-1}}$	$>675~{\rm GeV}$	[22]
ATLAS	$B \rightarrow Zb$	$Z(\ell\ell) + b$ jet	$2.0 {\rm ~fb^{-1}}$	>400 GeV	[23]

Table 1-5. Limits on vector-like quarks. T is a VLQ with charge 2/3, B is a VLQ with charge −1/3, Q is a VLQ with charge −1/3 or 2/3, and X is a VLQ with charge 5/3.

Randall-Sundrum models

- flavor-violating decay of KK gluon $g_{KK} \rightarrow ct$
 - limits on flavor-conserving decay $g_{KK} \rightarrow tt$ from ATLAS/ CMS, sensitivities for future experiments studied by top/ NP groups
 - decay similar to W' \rightarrow tb (also studied by top/NP group), convert sensitivities for W' into limits on g_{KK}
 - preliminary results: exclude BR(gKK \rightarrow tc) down to ~5% for M_{KK} = 1-2TeV and ~20% for M_{KK} = 3-4TeV with 300fb⁻¹ (better for 3ab⁻¹)

Experiment	Mode	Method	\sqrt{s}	\mathcal{L}	Mass Limit	Reference
ATLAS	$t\bar{t}$	lepton + jets	$7 { m TeV}$	$4.7 { m ~fb^{-1}}$	$> 2.07 { m ~TeV}$	[28]
CMS	$t\bar{t}$	lepton + jets	$7 { m TeV}$	$5.0~{\rm fb^{-1}}$	$> 1.82 { m ~TeV}$	[29]
ATLAS	$t ar{t}$	lepton + jets	$8 { m TeV}$	$14 \ {\rm fb}^{-1}$	$> 2.0 { m ~TeV}$	[31]
CMS	$t\bar{t}$	lepton + jets	$8 { m TeV}$	$19.6~{\rm fb^{-1}}$	$> 2.5 { m ~TeV}$	[30]
Table 1.C. Limits on the Value Visin share many						

Table 1-6. Limits on the Kaluza-Klein gluon mass.

Lepton Flavor Violation

- Heavy leptons in Type III see-saw models
 - heavy lepton (neutrino or charged lepton)
 decays into gauge boson + lepton
 - flavor violation: pair production + decay in opposite flavor leptons
 - interplay with neutrino mixing parameters
 - expect limits for 14 TeV and 33 TeV LHC

SUSY (simplified models)

– Leptonic modes:

- slepton (stau_R) direct pair production, with decays into e, $\mu,\,\tau$ + χ final states
- squark \rightarrow jet + χ , $\chi \rightarrow$ lepton slepton, slepton \rightarrow lepton gravitino
- Hadronic modes:
 - direct stop pair production, with one stop decaying to top + neutralino (dominant) and the other decaying to charm + neutralino (suppressed)

SUSY RPV

- R-parity violating operators provide many possibilities for flavor violation. For example:
 - Bilinear RPV with Higgsino LSP (LH3): Higgsino decays to W+lepton. Investigate both W+ μ and W+ τ decays
 - stop LSP decaying into two quarks via the UDD operator: probe both stop -> jet + b and stop -> 2jets decays

Decoupled SUSY ("mini-split")

- in this scenario squarks are in the 10-20 TeV range and maybe only relevant for the LHC energy upgrade, while gluino and neutralinos may still be relatively light
- EF facilities are indirect probes of FV
- main signature would be 3-body gluino decay in two quarks and missing energy
- flavor conserving decays: gluino \rightarrow tt_X, bb_X, jj_X, are probed by ATLAS and CMS (covered by EF NP subgroup)
- corresponding flavor violating decays: gluino \rightarrow tc_X, gluino \rightarrow bj_X
- given heaviness of squarks, relatively large FV BR's possible

Conclusions (1)

- low energy flavor and CP violation observables narrow the parameter space of various models of New Physics at the TeV scale
 - New physics has to have either a non-trivial flavor structure (i.e. not introduce flavor breaking much different than the Yukawa couplings) or be flavor blind
 - Future IF facilities (LHCb upgrade, Belle II) will improve by a factor of 2-3 on NP even on most "mature" cases e.g. B_{d,s} mixing (preliminary conclusion)
- the NP flavor structure can also be probed at high energy
 - studies generally require (considerably) more statistics than just discovery of new particles because in most cases the FV modes are sub-leading
 - there are a few cases which O(1) effects are not excluded by existing IF measurements

Conclusions (2)

- high energy probes provide complementary information to low energy measurements
 - flavor violation involves new mixing matrices (many parameters)
 - Potential reach for probing FV mixing matrices is in many cases new mixing matirce " V_{ij} " ~ can be probed down to O(0.1) ~ λ (if early LHC discovery).
 - Generically not competitive if already probed at IF (LHCb upgrade, Belle II, ...)
 - New complementary information for those entries which are difficult to probe at IF (e.g. RR-mixing in up-sector, etc.)

Conclusions (3)

- leptonic machines
 - precision spectrum measurements for important information on flavor structure
 - important for precision flavor studies if lepton partners (e.g. sleptons) found, especially if found in the next run of the LHC
 - SUSY bilinear RPV precision study at ILC white paper \rightarrow precision on sin² θ_{23} comparable or better than current neutrino expts.
 - only ≥ 1TeV option relevant for quark flavor violation (given current LHC results)

EF Flavor and CPV at Snowmass

- Results not ready yet (hopefully some this week, likely after the meeting)
- Work meetings to finalize write-up

-Wed 8:30 - 10:00

- Soni talk on "Repercussions of a geometric theory of flavor for future directions in High Energy Physics"
- Fri 8:30 12:00
- Sat 8:30 12:00