CSS2013 Colloquium: Opportunities with High Intensity Accelerators Beyond the Current Era

Technologies for Intensities Beyond the Current Era

Patrick Hurh, Bob Kephart, <u>Mark Palmer</u> August 4, 2013

🛟 Fermilab

Snowmass on the Mississippi

Outline

Accelerator Technologies to Move Beyond the State of the Art

- High Power Targetry
- High Intensity Muon Beams

 Including Muon Cooling
- Ongoing SRF Needs

HIGH-POWER TARGET FACILITIES: CHALLENGES AT ≥4 MW

Acknowledgments to Patrick Hurh (FNAL)

Critical Issues: High Power Target Facilities

- Target and Window
 Design Challenges
 - Heat removal
 - Thermo-mechanical integrity (beam induced stresses)
 - Radiation damage
 - Optimization for science yield

- Facility Design Challenges
 - Radiation protection and remote handling
 - Radiation accelerated corrosion
 - Optimization for science yield

	Target Challenges Heat Re							moval			
		35 -	1	0.22	1.4	0.6	3.74	2.56	6.3	15	30
At >4 M	1\/\/								Heat F	lux: M	W/m ²
 Differ capation Net - Net - Spation Stopp - App 	ent targ city utrino pro allation n ping targ	get ap oductio eutron gets 8 nateria	plicatio on targe target: conve l limits f	t: 1-2% of 95-100% entional or solid,	uire <i>ver</i> of beam % of bea target static ta	<i>ry differ</i> n power am pow geome argets	ent coo left in ta er left in tries:	o <i>ling</i> rget target			
5 Opt	Radiation cooling	0 -	ssivity-1 section 300K1bar Forced air conve	Wacho.3 Wacho.3 orcedneium.com orcedneium.com For	Macho ³ Macho ³ Rection 300K lbar Rection 300K lbar For red heilum conver- For For rators Be	Nacho.3 Nacho.3 Section 2004 100ar Section 2004 100	wacho ³ wacho ³ tion 1000K 10bar tion 1000K 1000K 10bar tion 1000K 1000K 10bar tion 1000K 1000	Anacho.3 Anacho.3 Anacho.3 Anacho.3 Aug	imited? introdesteboiling introdesteboiling introducesteboiling in	Potronwater spee	rmilab

Target ChallengesThermal Shock (Stress Waves)

Ta-rod after irradiation with 6E18 protons in 2.4 μ s pulses of 3E13 at ISOLDE (photo courtesy of J. Lettry)

- Fast expansion of material surrounded by cooler material creates a sudden local area of compressive stress
- Stress waves (not shock waves) move through the target
- Plastic deformation or cracking can occur

Simulation of stress wave propagation in Li lens (pbar source, Fermilab)

- Mitigating thermal shock:
 - Material Selection
 - Segment target length
 - Manipulate beam parameters (spot size, intensity)
- Also impacts liquid and rotating targets
 - Cavitation in liquid metal (SNS)
 - Rotating target in CW beam (FRIB)

6 Opportunities with High Intensity Accelerators Beyond the Current Era Aug 4, 2013 **Fermilab**

Target Challenges Thermal Shock (Stress Waves)

Target Challenges

- Displacements in metal crystal lattice
 - Embrittlement
 - Creep
 - Swelling
 - Fracture toughness reduction
 - Thermal/electrical conductivity reduction
 - Coefficient of thermal expansion changes
 - Accelerated corrosion
 - Transmutation products (impurities, gas production)
- Very dependent upon irradiation conditions (eg. temperature)

S. A. Malloy, et al., Journal of Nuclear Material, 2005. (LANSCE irradiations)

Radiation Damage

Radiation Damage

Irradiation Source	DPA rate (dpa/s)	He gas production (appm/DPA)	Irradiation Temp (°C)		
Mixed spectrum fission reactor	3e-7	0.1	200-600		
Fusion reactor	1e-6	10	400-1000		
High energy proton beam	6e-3	100	100-800		

Effects from low energy neutron irradiations do not equal effects from high energy proton irradiations. Table compares typical irradiation parameters. Opportunities with High Intensity Accelerators Beyond the Current Era Aug 4, 2013

Radiation Damage In Accelerator Target Environments

Broad aims are threefold:

- to generate new and useful materials data for application within the accelerator and fission/fusion communities
- to recruit and develop new scientific and engineering experts who can cross the boundaries between these communities
- to initiate and coordinate a continuing synergy between research in these communities, benefitting both proton accelerator applications in science and industry and carbon-free energy technologies

Target Challenges

Optimization for Science

- 3 major challenges are helped by spreading the beam out
 - Decreases peak temp and stresses
 - Increases surface area for cooling
 - Reduces DPA rate/Increases useable life
- Typically reduces science yield per incident particle
 - Extensive analysis required to optimize yield (also target lifetime)
 - Some novel solutions exist

- Some options:
 - Liquid metal jets
 - Powdered metal jets
 - Rotating solid discs
 - Multiple targets in one shield pile:

Facility Challenges Radiation Protection

• Typically:

- 50-75% of the cost of a new target facility is in the civil construction and radiation protection
- 75% of the cost of maintaining operations of a target facility is associated with systems and staff to work with radioactive materials
- Facility design highly dependent on full life-cycle planning (including disposition of spent radioactive materials)

• ≥4 MW vs. 1-2 MW:

- Prompt Dose Shielding minor differences
 - Increased shielding thickness
 - Increased cooling capacity for shielding
- Remote Handling nearly identical:
 - Increased shielding in casks/hot cells
 - Increased cool-down times
- Some previously minor problems could have new significance
 - Off-gas systems (esp. for liquid metal targets) will need significant attention
 - Loss of coolant scenarios more severe due to possible decay heat issues

Facility Challenges Radiation Protection

- Must apply lessons learned from 1 2 MW era:
 - Air activation must be carefully assessed and addressed in civil construction plans
 - Tritium production in shielding and component materials migrates readily and systems must be incorporated to isolate/collect and dispose of tritium safely (and legally)
 - Flexibility must be built into remote handling aspects of the facility design to handle off-normal events
 - Single event upsets can take down entire control systems if not shielded appropriately
 - Radiation can accelerate corrosion effects significantly; especially hi-strength steels exposed to activated, humid air

Facility Challenges Radiation Accelerated Corrosion

• Al 6061 samples:

- Displayed significant corrosion after 3.6 Grad
- NuMI target chase air handling condensate with pH of 2
- NuMI decay pipe window concerns

- Photograph of NuMI decay pipe US window showing corroded spot corresponding to beam spot
- MiniBooNE
 25 m absorber
 HS steel failure
 - Hydrogen embrittlement from accelerated corrosion.

FIG. 8. Localized corrosion on 6061 Al sample exposed 12 weeks to saturated water vapor at 200°C and gamma irradiation.

Facility Challenges Optimization for Science

- As with the target design, facility design must be optimized considering the following competing parameters:
 - Cost (both construction and operational)
 - Reliability/availability
 - Flexibility
 - Science yield

 General engineering consensus is that spending more on a reliable, high availability facility that is flexible enough to service several experimental needs will maximize science yield per \$ in the long term

For neutrino factories, colliders and other applications

HIGH INTENSITY MUON BEAMS

Key Technologies - Target

The MERIT Experiment at the CERN PS

- Demonstrated a 20m/s liquid Hg jet injected into a 15 T solenoid and hit with a 115 KJ/pulse beam!
 - Jets could operate with beam powers up to
 8 MW with a repetition rate of 70 Hz

MAP staging aimed at initial 1 MW target

Hg jet in a 15 T solenoid with measured disruption length ~ 28 cm Aug 4, 2013 **Fermilab**

Technology Challenges – Capture Solenoid

 A Neutrino Factory and/or Muon Collider Facility requires challenging magnet design in several areas:
 – Target Capture Solenoid (15-20T with large aperture)

E_{stored} ~ 3 GJ

O(10MW) resistive coil in high radiation environment

Possible application for High Temperature Superconducting magnet technology

Technology Challenges - Cooling

- Tertiary production of muon beams
 - Initial beam emittance intrinsically large
 - Cooling mechanism required, but no radiation damping

- dE/dx energy loss in materials
- RF to replace p_{long}

The Muon Ionization Cooling Experiment: Demonstrate the method and validate our simulations

Ionization Cooling

Muons cool via dE/dx in low-Z medium

Technology Challenges - Cooling

• Development of a cooling channel design to reduce the 6D phase space by a factor of $O(10^6) \rightarrow MC$ luminosity of $O(10^{34}) \text{ cm}^{-2} \text{ s}^{-1}$

 Some components beyond state-of-art:

 Very high field HTS solenoids (≥30 T)
 High gradient RF cavities operating in multi-Tesla fields

The program targets critical magnet and cooling cell technology demonstrations within its feasibility phase.

Cooling Channel R&D Effort

Successful Operation of 805 MHz "All Seasons" Cavity in 3T Magnetic Field under Vacuum

MuCool Test Area/Muons Inc

Breakthrough in HTS Cable Performance with Cables Matching Strand Performance

FNAL-Tech Div T. Shen-Early Career Award

The Path to a Viable Muon Ionization Cooling Channel

Demonstration of High Pressure RF Cavity <u>in 3T Magnetic</u> <u>Field with Beam</u>

> Extrapolates to µ-Collider Parameters

23 Opportunities with High Intensity Accelerators Beyesd Ane Current Era

World Record HTS-only Coil 15T on-axis field 16T on coil

PBL/BNL

Aug 4, 2013 🛟 Fermilab

Technology Challenges - Acceleration Muons require an ultrafast accelerator chain Beyond the capability of most machines Superconducting Linacs

Machines

Solutions include:

RLA II

255 m 2 GeV/pass

Opportunities with High Intensity Accelerators Beyond the Current Era 24

RCS requires 2 T p-p magnets at f = 400 Hz(U Miss & FNAL)

Recirculating Linear Accelerators (RLAs)

Fixed-Field Alternating-Gradient (FFAG)

Rapid Cycling Synchrotrons (RCS)

8 cell flat coil probe

JEMMRLA Proposal: JLAB Electron Model of Muon RLA with Multi-pass Arcs Aug 4, 2013 **Fermilab**

Superconducting RF Development

ONGOING SRF NEEDS

Acknowledgments to Bob Kephart (FNAL)

SRF Today: Bulk Nb Cavities

- Cavities based on bulk Nb have already reached performance values
 > 40 MV/m Eacc that approach the theoretical limits of Nb at ~ 180 mT for 1300 MHz cavities
- R&D has also led to surface processing that is cheaper and requires little or no Chemistry (e.g. Centrifugal Barrel Polish)
- Improved High Pressure Rinse and assembly techniques mean that Field emission is now often not a limitation
- JLAB 12 Gev Upgrade Cavities consistently ~ 25 MV/M
- ILC cavity yields > 90% at ~30 MV/M $Q_0 = 10^{10}$ seems achievable
- Key technologies for ILC or PX
 ⇒ ~in place
- But... high purity Nb is expensive
 ⇒ ~ 40% of the cavity cost
- So are cryomodules & big cryogenic refrigerators

What is possible in the future?

SRF Today: Surface R&D

- Already a lot of effort in this direction
- Determine what matters at an SRF surface and control it!
 - Bad topography or particulates
 - → Field emission or quenches
 - → losses
 - → need smooth clean surfaces
 - Impurities (e.g. precipitates, oxides, bulk contamination)
 - → lower Q0
 - → cryogenic load
 - Need surfaces with well controlled properties
 - But we don't always know what matters
- Performance is steadily getting better
- Well established techniques, useable for machines

But...

 It is unlikely that bulk Nb cavities built with high purity material and with anything like current processing are going to get a lot cheaper with time!

Bulk Nb Cavities

 Industrial fabrication technology in hand but cost of bulk Nb material is growing

COST/LB DATA **€** ³⁰⁰ COST/LB 186 175 • 110 PROCUREMENT YEAR

30 Opportunities with High Intensity Accelerators Beyond the Current Era Aug 4, 2013 **Fermilab**

SHEET NIOBIUM COST/LB versus PROCUREMENT YEAR

Current Cryomodules (ILC, XFEL, CBEAF)

ILC/XFEL type cryomodule at Fermilab

- 2 K cryogenic systems
- RF distribution
- Complicated!
- Expensive!

SRF: Its all about the surface!

- SRF currents flow only in the top 100 nm of a cavity surface
- → We pay for a lot of expensive high purity Nb that we do not use!
- Q₀ is often determined by surface impurities such as hydrides or defects.
- New surface treatment (e.g. Nitrogen or Argon treatment @FNAL) show world record Q₀ at gradients of interest for CW HEP accelerators (e.g. Project X)
- → Lower cryogenic costs
- Deposited films may allow the use of higher Tc materials resulting high Q₀ at higher temps.
- Thin films on e.g. Copper substrate are demonstrated to work. (e.g. LEP)
- Could save a lot of money but performance of SRF films are not yet as good as e.g. bulk Nb
- → Thin film R&D could have a big pay off

The Future of SRF? Lower the Cost!

- Low-cost <u>cavities</u> with deposited SRF films
 - Bulk material is cheap (e.g. copper or aluminum)
 - High Tc film SRF surfaces, better methods → higher gradients
 - High $Q_0 \rightarrow$ enables CW operation
- Low-cost cryomodules
 - Operate cavities at 4 K or above via conduction or tube cooling
 - Equip each cryomodule with cryo-coolers
 - No big cryogenics plant or large He inventory!
 - > No Helium vessels!
 - > Much cheaper cryomodule, perhaps even more reliable!
- Low cost, high efficiency RF
 - Solid State or Magnetron based
- Goal: an SRF Linac for HEP built at well below ILC costs
 - Seems achievable, and has lots of synergy with industrial use of SRF
 - Steady R&D support needed to make this possible

Conclusion

- High power targetry will be a crucial element of the accelerators needed for the 21st century
 - Considerable R&D is required
 - The time for investment is now
- Muon accelerators offer potentially unique capabilities for HEP
 - A vibrant R&D program needs further support to develop this potential
- SRF will be central to a broad range of accelerator applications on the horizon
 - Can we develop more cost effective implementations to leverage our HEP aspirations?

BACKUP SLIDES

The U.S. Muon Accelerator Program

Cooling Channel R&D Effort

Successful Operation of 805 MHz "All Seasons" Cavity in 3T Magnetic Field under Vacuum

MuCool Test Area/Muons Inc

Breakthrough in HTS Cable Performance with Cables Matching Strand Performance

FNAL-Tech Div T. Shen-Early Career Award

The Path to a Viable Muon Ionization Cooling Channel

Demonstration of High Pressure RF Cavity <u>in 3T Magnetic</u> <u>Field with Beam</u>

> Extrapolates to µ-Collider Parameters

38 Opportunities with High Intensity Accelerators Beyosd Ahe Current Era

World Record HTS-only Coil 15T on-axis field 16T on coil

PBL/BNL

Aug 4, 2013 🛟 Fermilab

Muon Collider Parameters

Muon Collider Parameters									
	Higgs F	Top Threshold Options			Multi-TeV Baselines				
									Accounts for
		Startup	Production	Hig	jh	High			Site Radiation
Parameter	Units	Operation	Operation	Resolu	ution	Luminosity			Mitigation
CoM Energy	TeV	0.126	0.126		0.35	0.35	1.5	3.0	6.0
Avg. Luminosity	10 ³⁴ cm ⁻² s ⁻¹	0.0017	0.008		0.07	0.6	1.25	4.4	12
Beam Energy Spread	%	0.003	0.004		0.01	0.1	0.1	0.1	0.1
Higgs* or Top ⁺ Production/10 ⁷ sec		3,500*	13,500*	7,	,000+	60 <i>,</i> 000⁺	37,500*	200,000*	820,000*
Circumference	km	0.3	0.3		0.7	0.7	2.5	4.5	6
No. of IPs		1	1		1	1	2	2	2
Repetition Rate	Hz	30	15		15	15	15	12	6
β*	cm	3.3	1.7		1.5	0.5	1 (0.5-2)	0.5 (0.3-3)	2.5
No. muons/bunch	10 ¹²	2	4		4	3	2	2	2
No. bunches/beam		1	1		1	1	1	1	1
Norm. Trans. Emittance, ϵ_{TN}	π mm-rad	0.4	0.2		0.2	0.05	0.025	0.025	0.025
Norm. Long. Emittance, ϵ_{LN}	π mm-rad	1	1.5		1.5	10	70	70	70
Bunch Length, σ_s	cm	5.6	6.3		0.9	0.5	1	0.5	2
Proton Driver Power	MW	4 [♯]	4		4	4	4	4	1.6
[#] Could begin operation with Project X Stage II beam									
Exquisite Energy Reso Allows Direct Measure of Higgs Width	Success of advanced cooling concepts ⇔ several × 10 ³²					Site F mitiga depth design	Radiation Ition with and lattice n: ≤ 10 TeV		
40 Opportunities with High Intensity Accelerators Beyond the Current Era Aug 4, 2013 😆 Fermi ab									

MAP Timeline

The Aims of the Muon Accelerator Program

Muon accelerator R&D is focused on developing a facility that can address critical questions spanning two frontiers...

The Intensity Frontier: with a Neutrino Factory producing well-characterized v beams for precise high sensitivity studies

<u>The Energy Frontier:</u> with a *Muon Collider* capable of reaching multi-TeV CoM energies and a **Higgs Factory** on the border between these Frontiers

The unique potential of a facility based on muon accelerators is physics reach that <u>SPANS 2 FRONTIERS</u>

The Future of Cryogenics for HEP?

LHC Cryo-Plant (1of 6)

Cryomodule mounted Cryo-coolers Compact, NO Liquid Helium! But.... don't work well at 2 K