What are the leading prospects for detecting GZK neutrinos? What experimental program is required to do this in the next 5 years, 10 years, 20 years, and how important is this?

The prospects are very good (modulus funding) since:
There is a bottom to the range of GZK fluxes
What are the leading prospects for detecting GZK neutrinos? What experimental program is required to do this in the next 5 years, 10 years, 20 years, and how important is this?

The prospects are very good (modulus funding) since:
- There is a bottom to the range of GZK fluxes
- Current efforts are ruling out the more optimistic estimates and reaching into the reasonable expectations
Current Limits

from Vieregg CSS13
What are the leading prospects for detecting GZK neutrinos? What experimental program is required to do this in the next 5 years, 10 years, 20 years, and how important is this?

The prospects are very good (modulus funding) since:
- There is a bottom to the range of GZK fluxes
- Current efforts are ruling out the more optimistic estimates and reaching into the reasonable expectations
- Next generation can improve by 1 order of magnitude
Future Sensitivities

from Connolly CSS13
What are the leading prospects for detecting GZK neutrinos? What experimental program is required to do this in the next 5 years, 10 years, 20 years, and how important is this?

The prospects are very good (modulus funding) since:

There is a bottom to the range of GZK fluxes
Current efforts are ruling out the more optimistic estimates and reaching into the reasonable expectations
Next generation can improve by 1 order of magnitude
Floor is moving up as the observed “iron fraction decreases”
What are the leading prospects for detecting GZK neutrinos? What experimental program is required to do this in the next 5 years, 10 years, 20 years, and how important is this?

The prospects are very good (modulus funding) since:
- There is a bottom to the range of GZK fluxes
- Current efforts are ruling out the more optimistic estimates and reaching into the reasonable expectations
- Next generation can improve by 1 order of magnitude
- Floor is moving up as the observed “iron fraction decreases”
- Could observe GZK neutrinos in next decade.
What are the leading prospects for detecting GZK neutrinos? What experimental program is required to do this in the next 5 years, 10 years, 20 years, and how important is this?

The prospects are very good (modulus funding) since:
- There is a bottom to the range of GZK fluxes
- Current efforts are ruling out the more optimistic estimates and reaching into the reasonable expectations
- Next generation can improve by 1 order of magnitude
- Floor is moving up as the observed “iron fraction decreases”
- Could observe GZK neutrinos in next decade.

What experiments: those I showed in my talk.
Next Generation

ARA: Askaryan Radio Array

ARA37

Deployed ARA Station
Planned ARA Station
Planned for 2014/15

ARIANNA

from Viereggs CSS13
Greenland Ice Thickness

from Vieregg CSS13

EVA: ExaVolt Antenna

reflector

feed array @ focus
What are the leading prospects for detecting GZK neutrinos? What experimental program is required to do this in the next 5 years, 10 years, 20 years, and how important is this?

The prospects are very good (modulus funding) since:
- There is a bottom to the range of GZK fluxes
- Current efforts are ruling out the more optimistic estimates and reaching into the reasonable expectations
- Next generation can improve by 1 order of magnitude
- Floor is moving up as the observed “iron fraction decreases”
- Could observe GZK neutrinos in next decade.

What experiments: those I showed in my talk.

How important: - 100 TeV CM neutrino interactions!!!
- Understand Cosmic Accelerators
Tests of UHE Neutrino Interactions

\[N_{ES} \approx C_{ES} \frac{\Phi^\nu}{\Phi^0} \frac{\sigma^\nu^2}{(\sigma^\nu_{CC} + \sigma^\nu_{NP})^2} \]

\[N_{QH} = C_{QH} \frac{\Phi^\nu}{\Phi^0} \frac{\sigma^\nu}{\sigma^\nu_{CC}} \]

\[\sigma(\nuN \rightarrow BH) \text{ for } n = 1, \ldots, 7 \]

\[M_D = 1 \text{ TeV} \]

\[\sigma(\nuN \rightarrow \ell X) \]

Gandhi et al.'96

[Graph showing neutrino energy (GeV) vs. cross-section (pb)]