Searches for Neutrinos from WIMP Dark Matter

- Potential Sources
- The IceCube Neutrino Detector
- Results from IceCube
- Future Prospects

July 29 - August 6 · Snowmass on the Mississippi · U. Minnesota, Minneapolis, MN
IceCube includes about 250 researchers from 39 institutions around the world. Prof. Francis Halzen, University of Wisconsin – Madison is the principal investigator and Prof. Olga Botner from Uppsala University serves as the collaboration spokesperson.
Candidate WIMP Accumulators

• Earth (ν-accessible only)
 • Capture depends on WIMP velocity distribution
 • Only slow, light (M_χ < 50 GeV) WIMPs accessible
 • Unlikely to be in capture-annihilation equilibrium
 • Hard to link to physical quantities
 • Focus on spin-independent (SI) interactions

• Sun (ν only)
 • Wide range of WIMP masses accessible
 • WIMP evaporation for M_χ <~ 4 GeV
 • ν absorption in sun for M_χ >~ 1 TeV
 • In equilibrium (Γ_{Ann} = (1/2)Γ_C)
 • extract σ_{χ-p}
 • Access both spin-dependent (SD) and SI interactions
Candidate WIMP Accumulators

• Galactic Center (ν plus γ, antimatter)
 • WIMPs collisionless
 • Inner halo cusp/core structure not well known:
 • extract $<\sigma_{\text{Ann}} \cdot v>$
 • average is over expected WIMP velocity distribution
 • or look for spectral lines

• Galactic Halo (ν plus γ, antimatter)
 • WIMPs collisionless
 • matter density known pretty well
 • extract $<\sigma_{\text{Ann}} \cdot v>$

• Dwarf spheroidal galaxies, galaxy clusters (ν plus γ)
 • attractively high mass-to-light ratio (dSph’s)
 • extract $<\sigma_{\text{Ann}} \cdot v>$
 • lots of mass, possible clumpiness
WIMP → Neutrino Channels

• Consider “extrema” to bracket possible neutrino energy spectrum
 • Hard channel
 • e.g., $\chi\chi \rightarrow W^+W^-$ and $\chi\chi \rightarrow \tau^+\tau^-$
 • Average $E_\nu \sim M_\chi/3$
 • Soft Channel
 • e.g., $\chi\chi \rightarrow bb$
 • Average $E_\nu \sim M_\chi/6$
 • Line Search
 • $\chi\chi \rightarrow \nu\nu$
 • $E_\nu \sim M_\chi$

• Search for ν_μ-induced muons in detector
Summary of IceCube Searches

Search for dark matter annihilations to ν at E_ν from 10 GeV – 10 TeV

Local sources: Sun (& Earth)
* IceCube-79 limits (PRL 110 (2013) 131302)

Galactic Halo
* IceCube-22 limits (PRD 84 (2011) 022004)
* IceCube-79 limits

Dwarf spheroidal galaxies
* IceCube-59 limits

Galaxy clusters

Galactic Center
* IceCube-79 sensitivity

Image: M. Strassler
The IceCube Detector

- First operating km-scale neutrino detector
 - ~5000 10” PMTs
 - 78 strings: 125 m horiz., 17 m vert.
- Originally optimized for TeV-PeV energies
 - now also sensitive to ~10 GeV scale with DeepCore in-fill
 - 8 in-fill strings mostly 72 m & 7 m
- Sensitive to M_χ from below ~50 GeV to above ~100 TeV
- Physics-quality data taken with partially completed detector
 - IC-22, IC-40, IC-59, IC-79
 - IC-79 volume is about 1 km3
Earth WIMPs

• Assumptions/Issues/Observations
 • Assumed velocity distribution matters
 • Earth is a shallow gravitational well
 • Neutrino oscillations can be relevant
 • “Dark disk” can increase Earth’s accumulation

Minimum velocity for WIMP to be captured by Earth after scattering off iron
Results and Predicted Sensitivity: Earth WIMPs

- Earth WIMPs
 - Dedicated online trigger/filter in place at Pole
 - selects vertically upward-going events w/low E threshold
 - No “off-source” region: analysis more challenging
 - atmospheric neutrinos are main background
 - can’t check with data
 - AMANDA analysis (published 2006)
 - Expected IceCube 10-yr sensitivity overlaid
 - Below: With and without “dark disc” assumption

IceCube Solar WIMP Search

- **Solar WIMPs**
 - extract neutrino sample, vetoing downgoing cosmic ray muons
 - sample dominated by atmospheric neutrinos
 - maximize efficiency for ~horizontal events
 - sun is ±23° from horizon
 - striking signature: high energy ν excess from direction of sun
Solar WIMPs

• Assumptions/Issues/Observations
 • In equilibrium: $\Gamma_{\text{Ann.}} = (1/2)\Gamma_{\text{Cap.}}$.
 • annihilation rate depends only on capture rate, i.e., on scattering cross sections
 • analyses can place limit on $\sigma_{\text{scatt.}}$.
 • Daughter neutrinos’ oscillations can be relevant
 • Daughter neutrinos’ absorption can be relevant
 • No known astrophysical source can mimic neutrino signal
IceCube Solar WIMP Search

- **Solar WIMPs**
 - **Recent (IC-79) analysis improvements:**
 - Uses full year’s data, including summer (317 days livetime)
 - Uses DeepCore to reach neutrino energies of 10-20 GeV

![Diagram](Image: M. Danninger)

Case 1 (WH):
- high energy
- up-going
- no containment

Case 2 (WL):
- low energy
- up-going
- strong containment

Case 3 (SL):
- low energy
- down-going
- strong containment
IceCube Solar WIMP Search

- Solar WIMPs
 - Recent (IC-79) analysis improvements:
 - Uses full year’s data, including summer (317 days livetime)
 - Uses DeepCore to reach neutrino energies of 10-20 GeV

Expected atmospheric neutrino flux.

Contained events (WinterLow) have lower energies than uncontained events (WinterHigh):

Probe different M_{χ}
IceCube Solar WIMP Search

- **Solar WIMPs**
 - Use shape of distribution of space angle (ψ) w.r.t. sun
 - Estimate background using off-source data
 - Systematics include
 - ice properties
 - module efficiencies
 - ν cross sections
IceCube Solar WIMP Search

• Solar WIMPs
 • Use shape of distribution of space angle (ψ) w.r.t. sun
 • Estimate background using off-source data
 • Systematics include
 • ice properties
 • module efficiencies
 • ν cross sections

\[
f(\psi | \mu) = \frac{\mu}{N_{\text{obs}}} f_s(\psi) + \left(1 - \frac{\mu}{N_{\text{obs}}} \right) f_{\text{bg}}(\psi)
\]

Space Angle w.r.t. Sun

(Angle between event track & direction from the Sun)

IceCube Searches for Neutrinos from Dark Matter
IceCube Solar WIMP Search: Results

• Solar WIMPs
 • final sample
 • final limits (with expected sensitivity overlaid)

Unblinded events in different samples

Expected sens. vs. observed result

- Expected (b5)
- Expected (W'W')
- Observed (b5)
- Observed (W'W')

\(\cos(\Psi) \)

\(\log_{10}(\sigma_{SD, \text{cm}^2}) \)

\(\log_{10}(m_\chi/\text{GeV}) \)
IceCube Solar WIMP Search: Results

• Solar WIMPs
 • Final limits

SI WIMP-proton cross-section limit

- Most stringent σ_{SD} limit for most models (reaches $M_\chi \sim 20$ GeV)
- Complementary to direct detection efforts
- Different (and fewer) astrophysical uncertainties
• Assumptions/Issues/Observations
 • Halo: predict ρ(dark matter)
 • N-body simulations
 • Gravitational lensing observations
 • Models agree at $r \sim 3$-30 kpc
 • Galactic Center: unknown ρ
 • simulations can’t get there
 • no direct measurements
 • but can still look for excess neutrinos therefrom
 • Interplay of decay channel and neutrino oscillations is relevant

FIG. 3. Differential muon neutrino energy spectrum per annihilation, taking neutrino oscillations into account. In this example we assume a WIMP mass of 300 GeV and 100% branching fraction into the corresponding annihilation channel.
IceCube GC & Halo WIMP Searches

• Galactic Center and Halo
 • 90% CL limits for several annihilation channels (assuming 100% BRs)
 • Early IC-22&40 analyses shown
IceCube GC WIMP Search

• Galactic Center
 • Extend previous search, adding IC-79 data with DeepCore
 • Two independent analyses:
 • Low energy ($M_\chi < 300$ GeV)
 • High energy ($M_\chi > 300$ GeV)
IceCube GC WIMP Searches

• Galactic Center
 • Extend previous search, adding IC-79 data with DeepCore
 • Two independent analyses:
 • Low energy ($M_\chi < 300$ GeV)
 • High energy ($M_\chi > 300$ GeV)
 • “Starting events” sample opens up southern sky
 • relies on muon vetoing
IceCube GC WIMP Sensitivity

• Galactic Center: IC-79 sensitivity
 • first time IceCube can reach <100 GeV masses for GC
 • 4 orders of magnitude improvement at this scale
 • unblinding of analysis underway
IceCube Halo WIMP Result

• Galactic Halo: IC-79 result
 • multipole analysis focuses on large scale anisotropies ($\ell<100$)
 • small halo-model dependencies
 • results compatible with background-only hypothesis
IceCube Dwarf Galaxy & Cluster WIMP Result

- Dwarf galaxy and galaxy clusters: IC-59 results
 - IC-59 dwarf galaxy (stacking analysis)
 - IC-59 galaxy cluster (point source search)
Future Work: IceCube/DeepCore

- IceCube/DeepCore can use cascade channel to test possible signals in PAMELA and Fermi data
 - Background from downward-going neutrino-induced muons is reduced
- (Highly effective veto and low energy reconstructions will keep muon neutrinos competitive, though.)
Conclusions

• Neutrinos are sensitive probes for detecting dark matter

• Searches for WIMP→ν signatures from distinct sources are “self-complementary,” and complementary to searches using other astrophysical messengers

• Solar WIMP annihilations to neutrinos would provide a “smoking gun” signature with minimal model assumptions

• Clever new ideas for detection channels and sources spur new analyses

• Future detectors with lower energy thresholds will probe region of parameter space made interesting by direct detection experiments
 • See PINGU talk, next.
PINGU & WIMPs

• PINGU: Precision IceCube Next Generation Upgrade
 • New IceCube in-fill array, to be proposed in fall 2013
 • Main physics goal: neutrino mass hierarchy with atmospheric neutrinos
 • see talk by T. DeYoung
 • 11:00 Weds., Anderson 250
 • But also has sensitivity to WIMPs, especially at lower WIMP masses
- Further increase sensor density relative to DeepCore
 - Baseline geometry has ~40 additional strings @ 60 DOMs
 - IceCube-based technology plus R&D modules
 - Include new low-E calibration devices
 - Geometry optimization underway
- Aims:
 - Physics program at $E_{\text{thr}} \sim$ few GeV
 - Neutrino mass hierarchy
 - Low mass WIMPs ($M_\chi \sim$10-100 GeV)
 - R&D: Cherenkov ring segment reco.?
• Below $E_\nu \sim 20$ GeV, PINGU provides gain in fiducial mass relative to the existing low E_ν in-fill, DeepCore
PINGU vs. DeepCore

- Simulated event:
 - 9.3 GeV neutrino
 - 4.4 GeV initial cascade
 - 4.9 GeV muon
 - Showing physics hits only
 - no noise shown, but noise is not hard to remove

DeepCore Only

DeepCore + PINGU
Predicted PINGU WIMP Sensitivities

• Solar WIMP sensitivity
 • PINGU can probe interesting WIMP mass range

• GC Line sensitivity
 • Again, PINGU reaches interesting masses

• N.B. Plots at trigger level
 • somewhat optimistic
PINGU Details

• Letter of Intent out in next 1-2 months
• Proposal submissions in fall
• Detector time frame
 • Could start full-detector data taking as early as 2019
• Detector cost estimate
 • $8-12M startup costs for drill
 • $1.25M per string
Conclusions

• PINGU can probe solar WIMPs with masses as low as 10 GeV

• Surrounding IceCube (and DeepCore) modules veto cosmic ray muons, giving PINGU access to downward-going starting events
 - solar WIMPs during austral summer
 - galactic center

• If approved, PINGU can be up and running in ~6 years
IceCube Dwarf Galaxy & Cluster WIMP Results

- **Dwarfs**

 ![Graph showing WIMP mass (GeV) vs. $\langle A \rangle$ for dwarfs.]

 Luenemann & Rott, ICRC 2011

 100% WW, NFW profile

- **Virgo with subclusters**

 ![Graph showing WIMP mass (GeV) vs. $\langle A \rangle$ for Virgo Cluster.]

 IceCube Preliminary

 - Best Limit obtained for Virgo Cluster

- **Galaxy clusters**

 ![Graph showing WIMP mass (GeV) vs. $\langle A \rangle$ for galaxy clusters.]

 IceCube Preliminary

 - Virgo with subclusters
 - Coma Cluster NFW and Sub
 - Virgo Cluster NFW and Sub
 - Andromeda NFW and Sub

 100% WW, NFW profile

D. Cowen/Penn State 36

Searches for Neutrinos from Dark Matter
Future Results: IceCube

- Perform line search for neutrinos motivated by
 - 130 GeV gamma ray line discussion
 - general principles
 - it's a new way to search

![Graph showing signal counts and p-value](Weniger (2011))

![Graph showing photon energy spectrum](Su, Finkbeiner (2012))

![Graph showing spectrum of unassociated 2FGL sources](Su, Finkbeiner (2012))

Rott, Astroteilchenphysik in Deutschland 2012
IceCube Results

- WIMP Decay: Assumptions
 - Dark matter is thermal relic and unstable
 - For them still to be here
 - \(\tau(\chi) > \tau(\text{universe}) = \) 4 x 10^{17} s
 - Line spectrum from \(\chi \rightarrow \nu \nu \)

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{lifetime_vs_mass}
\caption{Lifetime \(\tau \) vs. mass \(m_\chi \).}
\end{figure}
• Assumptions/Issues/Observations

• Dwarf galaxies:
 • attractive due to high mass-to-light ratio
 • many newly identified by Sloan
 • assume profile for dark matter (e.g. NFW*)

• Galaxy clusters:
 • factor in presence of substructures

• Neutrinos can probe higher WIMP masses than photons
 • Effective area for neutrinos increases with neutrino energy

Solar WIMPs

- Global SUSY analysis with IceCube
- Contours show 1-2σ credible regions

- Grey regions are without IceCube data
- Colored regions are with IceCube (but indicate relative probability only, not goodness of fit)
Challenges: Event Reconstruction

- The ice could have been designed a little better for us.
 - Photon scattering and absorption lengths are high below 2100 m
 - $\langle \lambda_{\text{eff}} \rangle \sim 50 \text{ m}$
 - $\langle \lambda_{\text{abs}} \rangle \sim 150 \text{ m}$
 - ...but they vary with depth throughout.
 - Our simulations must include all these variations in as much detail as we can measure.

- Be nice to be able to move in a calibrated light source next to each deployed DOM. Instead, use
 - muons
 - DOM LEDs