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FIG. 8. Relative difference in number of events in the on/off–
source region as a function of offset from the nominal posi-
tion. The regions are shifted by 60◦ steps to be centered at
∆RA+ δ. Error bars represent the statistical uncertainty in
the bin. Adjacent bins are correlated, as regions partially
overlap. Note the first bin corresponds to the result obtained
by this analysis. Bins 4-6 are closely related to bins 1-3, as
Non and Noff are swapped in them.

by Li and Ma to compute the significance of an on–source
observation [44]. The significance ξ is defined as

ξ =
Non − ηNoff

η
√
Non +Noff

≈ ∆N√
2×Noff

. (13)

Here η is the ratio in exposure, or ratio of the size of the
two regions. For our case of an equally sized on– and
off–source region, η = 1.
Figure 9 shows the obtained exclusion limit compared

to the “natural scale”, for which dark matter candidates
are consistent with being a thermal relic [45, 46]. Larger
cross sections are possible if, for example, dark matter is
produced non-thermally or acquires mass only in the late
universe [47].
Applying the same procedure as that above for the

annihilation cross section, we compute a 90% C.L. lower
limit on the WIMP lifetime, τ , as function of the WIMP
mass, as shown in Fig. 10. We assume a line spectrum,
χ → νν and apply Eq. 9 for the expected neutrino flux.
If dark matter is a thermal relic and unstable, the only
requirement in order for it to be present today is that it
has a lifetime much longer than the age of the Universe
TU ≃ 4× 1017 s.
Our limit calculation assumes smooth, spherically sym-

metric halo models. However, N-body simulations in-
dicate that dark matter in the halo should have some
substructure [50, 51]. While this will have negligible ef-
fects on the expected neutrino flux from dark matter de-
cay, the presence of substructure will enhance the self-
annihilation rate since it is proportional to the square
of the dark matter density. To quantify the average ex-
pected enhancement in the annihilation rate compared
to a smooth dark matter distribution, one can define a
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FIG. 9. (Color online) 90% C.L. upper limit on the dark mat-
ter self annihilation cross section for five different annihilation
channels. Also shown are the natural scale (red dotted line),
for which the WIMP is a thermal relic [45, 46], and unitarity
bound (blue line) [48, 49]. For the limit curves, the central line
is for the Einasto and NFW profiles, while the shaded width
identifies the extrema results from the Moore and Kravtsov
profiles. We consider only smooth halo profiles. The limits
for ττ and µµ overlay, due to their very similar high energy
neutrino spectra.

10
24

10
26

10
28

10
3

10
4

10
5

L
if
e
ti
m

e
 τ

 [
s
]

mχ [GeV]

Halo Uncertainty
χ → νν Einasto

FIG. 10. Lower limit on WIMP lifetime τ assuming χ → νν̄
at 90% C.L..

boost factor as a function of the distance from the Galac-
tic Center [52, 53]:

B(r) =

∫

ρ2dV
∫

(ρ̄)2dV
, (14)

where we defined ρ̄ as the mean density of the smooth
halo component. To determine the impact of a boosted


