

ANSE-RELATED PROJECTS: LHCONE, DYNES AND OTHERS AN OVERVIEW

Artur Barczyk/Caltech 2nd ANSE Collaboration Workshop Snowmass on the Mississippi Minneapolis, July 2013

July 31, 2013

Artur.Barczyk@cern.ch

LHCONE: INTRODUCTION

July 31, 2013

Artur.Barczyk@cern.ch

LHCONE Introduction

- CALTECH HEP NETWORKING
- In brief, LHCONE was born to address two main issues:
 - ensure that the services to the science community maintain their quality and reliability
 - protect existing R&E infrastructures against potential "threats" of very large data flows
- LHCONE is expected to
 - Provide some guarantees of performance
 - Large data flows across managed bandwidth that would provide better determinism than shared IP networks
 - Segregation from competing traffic flows
 - Manage capacity as # sites x Max flow/site x # Flows increases
 - Provide ways for better utilization of resources
 - Use all available resources
 - Provide Traffic Engineering and flow management capability

Leverage investments being made in advanced networking

LHCONE Overview

Current activities split in several areas:

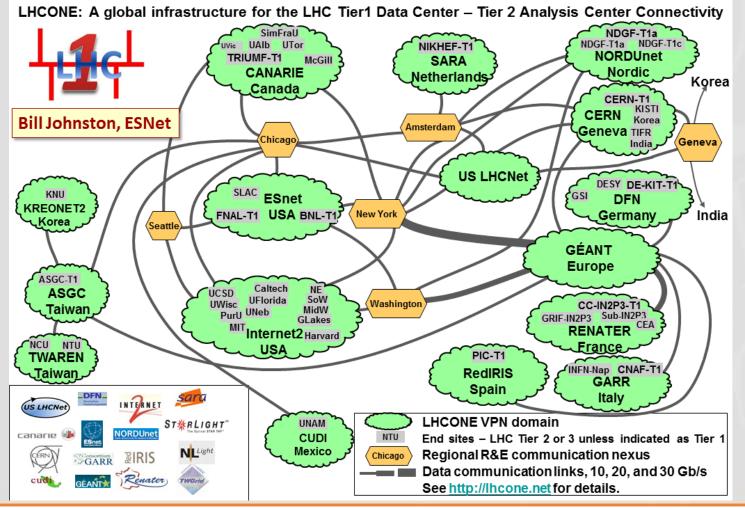
- Multipoint connectivity through L3VPN
 - Routed IP, virtualized service
- Point-to-point dynamic circuits
 - R&D, targeting demonstration this year
- Common to both is logical separation of LHC traffic from the General Purpose Network (GPN)
 - Avoids interference effects
 - Allows trusted connection and firewall bypass
- More **R&D** in **SDN/Openflow** for LHC traffic

for tasks which cannot be done with traditional methods

July 31, 2013

Artur.Barczyk@cern.ch

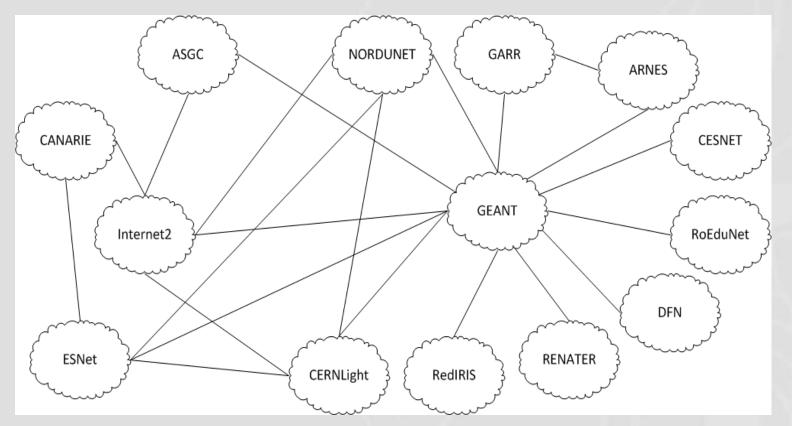
LHCONE: ROUTED IP SERVICE


July 31, 2013

Artur.Barczyk@cern.ch

Routed L3VPN Service, VRF

- Based on Virtual Routing and Forwarding (VRF)
- BGP peerings between the VRF domains
- Currently serving 44 LHC computing sites



July 31, 2013

Artur.Barczyk@cern.ch

Current logical connectivity diagram:

From Mian Usman (DANTE)

July 31, 2013

Artur.Barczyk@cern.ch

Inter-domain connectivity

- Many of the inter-domain peerings are established at Open Lightpath Exchanges
- Any R&E Network or End-site can peer with the LHCONE domains at any of the Exchange Points (or directly)

	MANLAN	StarLight	WIX	NetherLight	CERNLight
				A	
GEANT	\bigstar	\bigstar	\bigstar	\bigstar	\bigstar
NORDUnet	\star			\bigstar	
Internet2	\bigstar	\bigstar	\bigstar		
ESnet	\bigstar	\bigstar	\star		
CANARIE	\bigstar	\bigstar			
ASGC		\star		\bigstar	

Artur.Barczyk@cern.ch

LHCONE: POINT-TO-POINT SERVICE

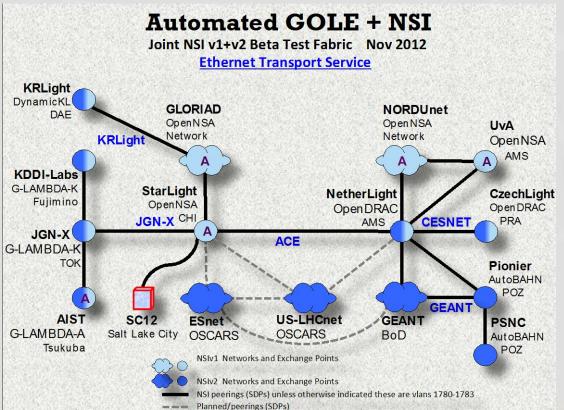
PATH TO A DEMONSTRATION SYSTEM

July 31, 2013

Artur.Barczyk@cern.ch

Dynamic Point-to-Point Service

- CALTECH HEP NETWORKING
- Provide reserved bandwidth between a pair of end-points
- Several provisioning systems developped by R&E community: OSCARS (ESnet), OpenDRAC (SURFnet), G-Lambda-A (AIST), G-Lambda-K (KDDI), AutoBAHN (GEANT)
- Inter-domain: need accepted standards
- OGF NSI: The standards Network Services Interface
- Connection Service (NSI CS):
 - v1 'done' and demonstrated e.g. at GLIF and SC'12
 - Currently standardizing v2


Artur.Barczyk@cern.ch

GLIF and Dynamic Point-to-Point Circuits

- GLIF is performing regular demonstrations and plugfests of NSI-based systems
- Automated-GOLE Working Group actively developing the notion of exchange points automated through NSI
 - GOLE = GLIF Open Lightpath Exchange

This is a R&D and demonstration infrastructure!

Some elements could potentially be used for a demonstration in LHCONE context

US LHCNet

hep.caltech.edu

CALTECH HEP NETWORKING

Artur.Barczyk@cern.ch

Point-to-Point Service in LHCONE

- Intended to support bulk data transfers at high rate
- Separation from GPN-style infrastructure to avoid interferences between flows
- LHCONE has conducted 2 workshops:
 - 1st LHCONE P2P workshop was held in December 2012
 - https://indico.cern.ch/conferenceDisplay.py?confld=215393
 - 2nd workshop held May 2013 in Geneva
 - https://indico.cern.ch/conferenceDisplay.py?confld=241490
- (Some) Challenges we face:
 - multi-domain system
 - edge connectivity to and within end-sites
 - how to use the system from LHC experiments' perspective
 - e.g. ANSE project in the US
 - manage expectations

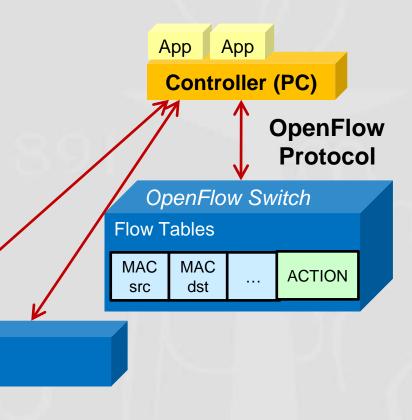
Point-to-point Demo/Testbed

- Demo proposed at the 2nd workshop by Inder Monga (ESnet)
 - 1) Choose a few interested sites
 - 2) Build static mesh of P2P circuits with small but permanent bandwidth
 - 3) Use NSI 2.0 mechanisms to
 - Dynamically increase and reduce bandwidth
 - Based on Job placement or transfer queue
 - Based or dynamic allocation of resources
- Define adequate metrics!
 - for meaningful comparison with GPN or/and VRF
- Include both CMS and ATLAS
- ANSE is a key part in this bridging the infrastructure and software stacks in CMS and ATLAS
- Time scale: TDB ("this year")
- Participation: TDB ("any site/domain interested")

US LHCNe

LHCONE: SDN/OPENFLOW

OTHER R&D ACTIVITIES



July 31, 2013

Artur.Barczyk@cern.ch

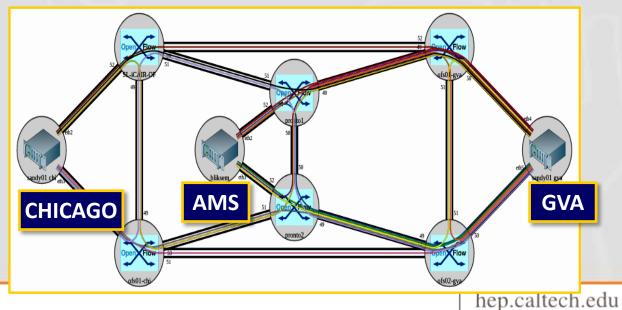
One slide of introduction

- Software Defined Networking (SDN): Simply put, physical separation of control and data planes
- **Openflow**: a protocol between controller entity and the network devices
- The potential is clear: a network operator (or even user) can write applications which **determine** how the network behaves
- E.g. centralized control enables efficient and powerful optimization ("traffic engineering") in complex environments

CALTECH HEP NETWORKING

US LHCNe

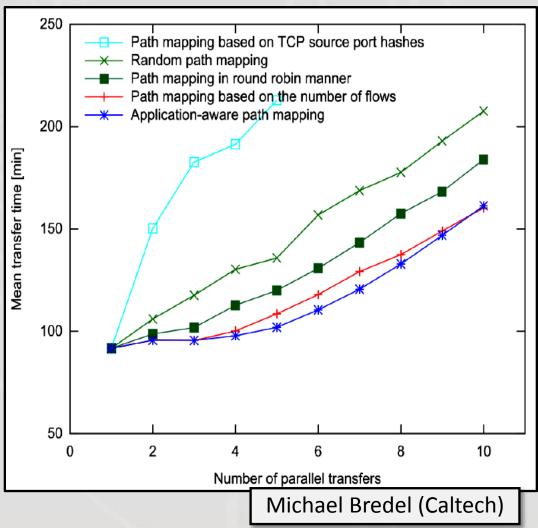
Meeting on SDN in LHCONE, May 3rd, 2013


Discussed the potential use case: SDN/Openflow could enable solutions to problems where no commercial solution exists Identify possible issues/problems Openflow could solve, for which no other solution currently exists?

- Multitude of transatlantic circuits makes flow management difficult
 - Impacts the LHCONE VRF, but also the GPN
 - No satisfactory commercial solution has been found at layers 1-3
 - Problem can be easily addressed at Layer2 using Openflow
 - Caltech has a DOE funded project running, developing multipath switching capability (OLiMPS)
 - We'll examine this for use in LHCONE
- ATLAS use case: flexible cloud interconnect
 - OpenStack deployed at several sites.
 - Openflow is the natural virtualisation technology in the network.
 Could be used to bridge the data centers

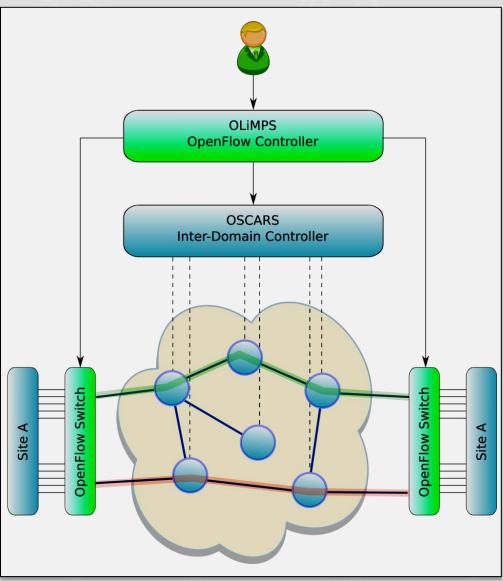
LHCONE - Multipath problem with SDN CALTECH HEP

- Initiated by Caltech and SARA; now continued by Caltech with SURFnet
 Caltech: OLIMPS project (DOE OASCR)
 - Implement multipath control functionality using Openflow
 - SARA: investigations of use of MPTCP
- Basic idea: Flow-based load balancing over multiple paths
 - Initially: use static topology, and/or bandwidth allocation (e.g. NSI)
 - Later: comprehensive real-time information from the network (utilization, topology changes) as well as interface to applications
 - MPTCP on end-hosts
- Demonstrated at GLIF 2012, SC'12, TNC 2012


US LHCN

OLiMPS preliminary results example

- Started with local experimental setup
 - 5 link-disjoint paths, 5 Openflow switches
 - 1 to 10 parallel transfers
 - Single transfer (with multiple files) takes approximately 90 minutes
 - File sizes between
 1 and 40 GByte (Zipf);
 500 GByte in total
 - Exponentially distributed inter-transfer waiting times
- Compared 5 different flow mapping algorithms
- Best performance: Application-aware or number- of-flows path mapping



Artur.Barczyk@cern.ch

OLIMPS and OSCARS dynamic circuits

OLiMPS/OSCARS Interface

- User (or application) requests network setup from OLiMPS controller
- OLiMPS requests setup of multiple paths from OSCARS-IDC
- OLIMPS connects OpenFlow switches to OSCARS termination points, i.e. VLANs
- OLiMPS transparently maps the site traffic to the VLANs

July 31, 2013

Artur.Barczyk@cern.ch

hep.caltech.edu

US LHCNe

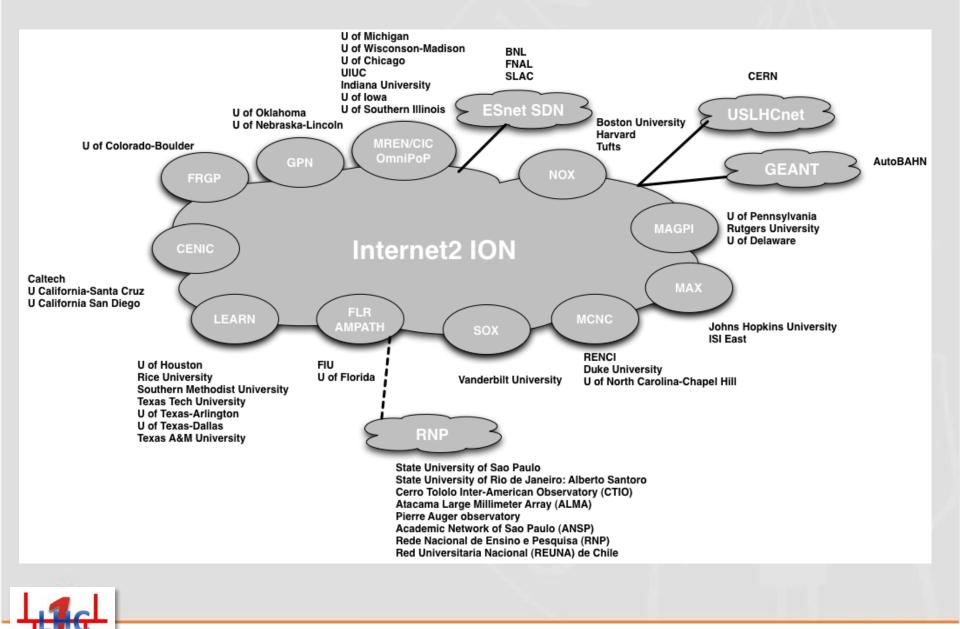
DYNES

DYnamic NEtwork Services

July 31, 2013

Artur.Barczyk@cern.ch

DYNES and its relation to ANSE



- DYNES is an NSF funded project to deploy a cyberinstrument linking up to 50 US campuses through Internet2 dynamic circuit backbone and regional networks
 - based on ION service, using OSCARS technology
- PI organizations: Internet2, Caltech, UoMichigan, Vanderbilt
- DYNES instrument can be viewed as a production-grade 'starter-kit'
 - comes with a disk server, inter-domain controller (server) and FDT installation
 - FDT code includes OSCARS IDC API
 reserves bandwidth, and moves data through the created circuit
 - "Bandwidth on Demand", i.e. get it now or never
 - routed GPN as fallback
- The DYNES system is naturally capable of advance reservation
- ANSE: We need the right agent code inside CMS/ATLAS to call the API whenever transfers involve two DYNES sites

DYNES High-level topology

CALTECH HEP NETWORKING **US LHCNet**

July 31, 2013

Artur.Barczyk@cern.ch

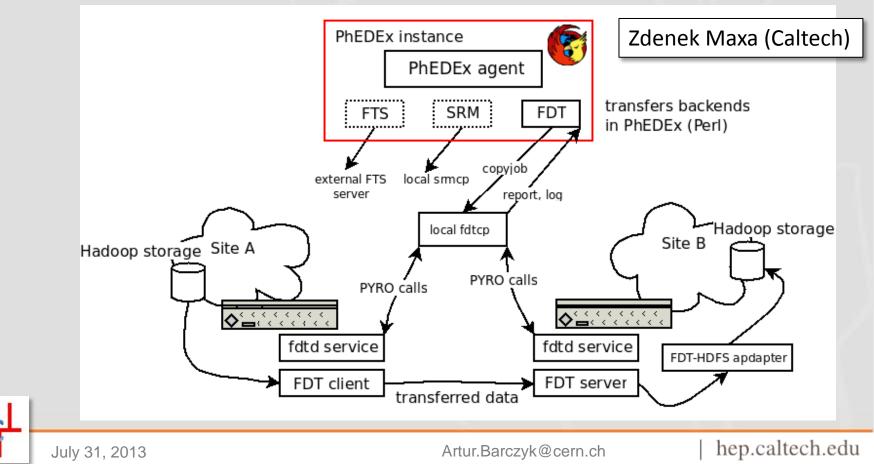
DYNES Sites

CALTECH HEP NETWORKING **US LHCNet**

DYNES is extending circuit capabilities to ~40-50 US campuses

DYNES is ramping up to full scale, and working toward routine Operations in 2013

Intended as integral part of the point-to-point service in LHCONE



July 31, 2013

Artur.Barczyk@cern.ch

DYNES/FDT/PhEDEx Integration

- FDT integrates OSCARS IDC API to reserve network capacity for data transfers
- FDT has been integrated with PhEDEx at the level of download agent
- Basic functionality tested, performance depends on storage systems
- FDT deployed as part of DYNES: Entry point for ANSE

US LHCNet

DYNES Status

- The DYNES project targeted extending a production service in Internet2 (and ESnet) and bringing it out to the scientists at major research Universities
 - This was the first coordinated attempt to use circuit creation on demand at this scale and we found a number of issues that need addressing in the production services
- DYNES has deployed equipment to 54 institutions (Universities or Regional Network Providers)
 - retrofitted 29 sites with OpenFlow capable switches (Dell/Force10 S4810s) allowing us to include OpenFlow options in our toolkit
- <u>DYNES ends officially today</u> (July 31, 2013) and we have setup community support lists to allow the various institutions to self-support moving forward
- DYNES will continue to pursue (in a best-effort way) improving the underlying service resiliency and reliability.
- Additionally, we all must work with regional network providers to implement (and document) best practices for protecting circuits created between DYNES sites, respecting the SLAs that are in place.

US LHCNe

Conclusion

- The ecosystem in which ANSE operates includes projects and initiatives such as
 - DYNES
 - used by ANSE as the underlying circuit infrastructure in the US
 - interconnects 44 campuses, many of which are part of the LHC computing infrastructure
 - LHCONE (for global service provisioning)
 - ANSE goal is to provide the interface between the point-to-point service and the experiments' software stacks
- It builds on long-term efforts
 - in various major R&E networks
 - organizations like GLIF, OGF (NSI, NML)
- Software-Defined Networking provides powerful, novel capabilities
 - solving problems currently not solvable commercially
 - use cases and applications currently investigated in projects like OLiMPS, as well as within the LHCONE

Artur.Barczyk@cern.ch

US LHCNe

THANK YOU! QUESTIONS?

Artur.Barczyk@cern.ch

July 31, 2013

Artur.Barczyk@cern.ch