Introduction

M. Gilchriese July 30, 2013

Outline of Session

Working group organization and goals Brief overview and <u>non – U.S.</u> summary

Talks are short

Emphasis on summary and conclusions

This is only session on underground facilities at Snowmass

Feedback during meeting, and offline

Very short summary on Aug. 6

U.S underground capabilities and organization Summary of key conclusions

Tuesday July 30, 2013

	08:30 - 12:30 Frontier Capabilities: Underground Facilities 1							
	Convener:	Murdock Gilchriese (Lawrence Berkeley National Laboratory)						
	Location:	Blegen 105						
_	08:30 Overv	view of existing and planned underground capabilities 15'						
_	Speaker:	Murdock Gilchriese (Lawrence Berkeley National Laboratory)						
	08:45 Connection to dark matter experiments 15'							
	Speaker:	Michael Witherell (UCSB)						
	09:00 Connection to neutrinoless double beta decay and other nuclear physics							
	experiments 15'							
	Speaker:	Josh Klein (University of Pennsylvania)						
	09:15 Discussion 30'							
	9:45 Frontie	9:45 Frontier Capabilities: Underground Facilities 1: [Coffee Break] 30'						
	10:15 Reactor Experiments and underground capabilities 15'							
	Speaker:	Karsten Heeger (University of Wisconsin)						
	10:30 Non-proliferation Detectors and Underground Capabilities 10'							
	Speaker:	Adam Bernstein (LLNL)						
	10:40 Supernova and Atmospheric Neutrinos and Underground Capabilities 15'							
	Speaker:	Kate Scholberg (Duke University)						
	10:55 Long baseline neutrinos, proton decay and underground capabilities 15'							
	Speaker:	Prof. Henry Sobel Sobel (University of California)						
	11:10 Discussion 20'							
	11:30 Underground capabilities and Detector R&D 15'							
	Speaker:	Prof. Priscilla Cushman (University of Minnesota)						
\mathcal{C}	11:45 Organiziation of US Underground Capabilities and Wrap Up 15'							
	Speaker:	Murdock Gilchriese (Lawrence Berkeley National Laboratory)						
	12:00 Discussion 30'							

Why Underground Facilities Working Group?

- Underground facilities and capabilities essential to support experiments that are central to the world-wide and U.S. scientific program
 - Direct dark matter
 - Neutrinoless double-beta decay ($0\nu\beta\beta$)
 - Neutrino properties, mixing parameters and CP violation
 - Connections to astrophysics and nuclear science
- Critical decisions soon for U.S. program involve underground facilities
 - LBNE underground?
 - Breadth and evolution of U.S. role in direct dark matter and $0\nu\beta\beta$ experiments?

Underground Capabilities - General Charge

- 1. Assess the status and potential plans for underground facilities worldwide, with particular attention to the current and planned role of U.S. scientists;
- Answer the following question in conjunction with the relevant Cosmic Frontier, Intensity Frontier and Instrumentation Frontier working groups – how will the existing or planned underground facilities meet the needs of US scientists and their scientific goals over the next 10 – 15 years (to about 2025)?
- 3. Address future U.S. organizational aspects for underground facilities

Underground Capabilities - Working Groups

- NAF1 on underground facilities to support very large detectors for neutrino physics, proton decay and other science requiring detectors of the multikiloton scale.
 - NAF1 conveners: K. Heeger (Wisconsin), K. Scholberg (Duke), H. Sobel (Irvine)
- NAF2 on underground facilities for dark matter experiments, neutrinoless double beta decay experiments, underground accelerators for nuclear astrophysics or other physics, low background assay of materials and related topics.
 - NAF2 conveners: P. Cushman (Minnesota), J. Klein (Pennsylvania), M. Witherell (Santa Barbara)
- Underground facilities in support of instrumentation development in both working groups
 - Conveners, contact with Instrumentation: P. Cushman (Minnesota), M. Gilchriese (LBNL)
- Neutrinos and society
 - Convener is A. Bernstein (LLNL), potential connections with underground capabilities. Primarily detectors for non-proliferation monitoring.

Summary of Process

- Interactions with scientific working groups: cosmic frontier(dark matter direct detection, facilities), intensity frontier (double beta decay, accelerator and non-accelerator neutrinos)
- Working group members "embedded" in scientific working groups
- Requested "1 pagers" from U.S. labs, Antarctica and Snolab, phone meetings with each of these lab heads
- Phone meetings with presentations for Kamioka, CJPL, LNGS
- Our focus has been
 - <u>Future</u> capabilities where going, not so much where we are or past
 - Key U.S. issues that might be of interest to P5
- Or focus has not been
 - Summarizing enormously diverse underground experimental program or why important – a number of recent Academy of Science studies do this well + numerous review articles
 - Or current facilities again, current situation well documented e.g. EJPL dedicated issue

Our Underground Facilities Scope

- Underground includes under ice South Pole
- We have included Daya Bay/RENO in our definition of "underground"
 - Some overlap of experimental aspects with other underground experiments
 - Evolution of these experiments(JUNO, RENO50) will be deep enough to have even more overlap with traditional underground experiments
- We have not include shallow sites e.g. Nova
- We have not included underwater experiments/facilities
- Welcome any input on this.

U.S. Scientists Underground

- Count of <u>current</u> U.S. heads (only)* at underground facilities, including Antarctica. Roughly 1,000 U.S. heads.
- Future: 30-50% growth(no hard estimate)

Recent Expansion in Non – U.S. Underground Facilities

- Within the last ~ 3 years there has been a significant expansion in non – U.S. underground facilities. Will discuss U.S. at end of session.
- Canfranc (Spain) medium deep lab, still in process of implementing dark matter and $0\nu\beta\beta$ experiments. Small U.S. involvement.
- CJPL(China) very deep lab, tunnel access, initial dark matter experiments (CDEX, PANDA-X) installed, starting to operate. Small U.S. involvement.
- Snolab(Canada) very deep lab, shaft access, broad and diverse program now initiated. Substantial U.S. involvement.
- This trend expansion of underground facilities outside the U.S. is planned to continue and in fact grow in the remainder of this decade.

Summary Non – U.S. "General Purpose" Underground

- Comparison of current(blue) and future(red) volumes
- Key aspects of non U.S. expansion covered in this talk
- U.S. in last talk of session, current volumes shown here for reference
- INO and Kamioka do not include space for large neutrino detectors in this plot(see next page)
- If all realized, general purpose underground space worldwide will about double by end of decade.

Summary – Mostly Neutrino Underground

- Hard to separate experiment from facility
- Highlighted are potential new facilities
- Facilities for large neutrino detectors and proton decay covered in subsequent talks

		Proton decay	Long baseline v	Supernova v	Atmospheric v	Reactor v	Geoneutrino v	Astrophysical v	Solar v	Non-proliferation v
SNO+	Canada	Х		Х		Х	Х			
JUNO	China			Х		Х	Х			
CUPP	Finland	Х	Х	Х	Х					
INO	India				Х					
Kamland	Japan			Х			Х			
SuperK/T2K	Japan	Х	Х	Х	Х					
HyperK	Japan	Х	Х	Х	Х				Х	
RENO50	Korea			Х		Х	Х			
Antarctica(various)	South Pole			Х	Х			Х		
LBNE(underground)	USA	Х	Х	Х	Х					
Soudan(MINOS+, etc)	USA		Х		Х					
WATCHMAN	USA			?					1.1	Х

Future Non – U.S. Underground Facilities(I)

- LNGS(Italy)
 - Termination of neutrinos from CERN will free up space for future dark matter and $0\nu\beta\beta$ experiments
 - Considering implementation of complex, active shielding for multiple experiments (Hall C)
- Snolab(Canada)
 - No plans to expand next \sim 5 years
 - Technically possible, needs to be identified
 - U.S. Canada arrangement? Needs agency to agency agreement
 - Deeper?
- Modane(France)
 - New, large hall
 - By 2016-2017

Future Non – U.S. Underground Facilities(II)

- CJPL(China)
 - Very substantial expansion planned to be completed by ~ 2016
 - Factor 25 expansion: 4,000 -> 100,000 m³
 - Multiple, connected halls. Eight 12mx12mx60m or four 12mx12mx150m
 - Configuration now under discussion
 - International lab. U.S. workshop Sept. 8 in conjunction with TAUP meeting
- India Neutrino Observatory (INO)
 - Large hall for atmospheric neutrino detector covered in subsequent talk
 - Also halls for dark matter and $0\nu\beta\beta$
 - Timescale uncertain ~ 2018?

Future Non – U.S. Underground Facilities(II)

- Yang-Yang Lab(Korea)
 - Modest depth
 - Approved expansion by factor 8
 - By ~ 2015?
- ANDES(Argentina/Chile)
 - Unique in southern hemisphere(apart from South Pole)
 - High but also deep, significant space proposed
 - 65,000m³
 - Uncertain. End of decade?
- Kamioka
 - No significant expansion planned(but see HyperK)
 - Could expand if needed.
- Other labs, neutrino facilities covered in talks by Karsten, Hank and Kate 14

Conclusions

- Large number of U.S. scientists working underground/ice, roughly 1,000 now and may grow to 1300-1500 over this decade
- About ½ currently working at U.S. facilities + South Pole
- Significant expansion of non U.S. underground facilities in last three years(Canfranc, CJPL, Snolab,...). U.S. scientists benefit (primarily Snolab)
- Expansion will continue outside the U.S. (CJPL, Modane, Y2L, INO,...)
- Facilities for large neutrino experiments, proton decay covered in subsequent talks.
- U.S. situation in last talk of session