

A precise determination of top quark electroweak couplings at the ILC operating at 500 GeV

Roman Pöschl

Arxiv: 1307.1802 1307.8265 (ILC white paper)

Based on work in the groups of

... and the ILD Detector concept

Snowmass CSS 2013 - Minneapolis/MN August 2013

The top quark and flavor hierarchy

Flavor hierarchy? Role of 3rd generation?

- A_{FB} anomaly at LEP for b quark Tensions at Tevatron
- Heavy fermion effect?

Strong motivation to study chiral structure of top vertex in high energy e+e- collisions

Why is it sooo heavy?

	104	-			
	10 ³	-			0
e	10 ²	-			
G	10 ¹	-			10
ass	10 ⁰	-		CS	τ
Ξ	10⁻¹	-		μ	
	10 ⁻²	-	d		
	10 ⁻³	-	e		
	-		-		
	10 ⁻⁹	-		24	ν_{τ}
	10	-		×μ	
	10		٧e		
	i la	175			

Top quark physics at (I)LC

Polarised beams allow to test chiral structure at ttX vertex
 => Precision on form factors F (this talk)

-ILC is promising for high precision top quark 'tomography'

Testing the chiral structure of the Standard Model

$$\Gamma^{ttX}_{\mu}(k^{2},q,\bar{q}) = -ie \left\{ \gamma_{\mu} \left(F^{X}_{1V}(k^{2}) + \gamma_{5}F^{X}_{1A}(k^{2}) \right) + \frac{\sigma_{\mu\nu}}{2m_{t}}(q+\bar{q})^{\mu} \left(iF^{X}_{2V}(k^{2}) + \gamma_{5}F^{X}_{2A}(k^{2}) \right) \right\},$$

$$\mathcal{F}^{L}_{ij} = -F^{\gamma}_{ij} + \left(\frac{-\frac{1}{2} + s^{2}_{w}}{s_{w}c_{w}} \right) \left(\frac{s}{s-m^{2}_{Z}} \right) F^{Z}_{ij}$$

$$\mathcal{F}^{R}_{ij} = -F^{\gamma}_{ij} + \left(\frac{s^{2}_{w}}{s_{w}c_{w}} \right) \left(\frac{s}{s-m^{2}_{Z}} \right) F^{Z}_{ij} ,$$

$$(2)$$

Pure γ or pure $Z^0: \sigma \sim (F_i)^2 \Rightarrow$ No sensitivity to sign of Form Factors Z^0/γ interference $: \sigma \sim (F_i) \Rightarrow$ Sensitivity to sign of Form Factors

Disentangling

ILC 'provides' two beam polarisations

$$P(e^{-}) = \pm 80\%$$
 $P(e^{+}) = \mp 30\%$

There exists a number of observables sensitive to chiral structure, e.g.

$$\boldsymbol{\sigma}_{\boldsymbol{I}} \qquad A_{FB,I}^t = \frac{N(\cos\theta > 0) - N(\cos\theta < 0)}{N(\cos\theta > 0) + N(\cos\theta < 0)} \qquad (F_R)_I =$$

x-section

Forward backward asymmetry

Fraction of right handed top quarks

 $(\sigma_{t_R})_I$

σι

\mathbf{r}

Extraction of six (five) unknowns

$$F_{1V}^{\gamma}, F_{1V}^{Z}, F_{1A}^{\gamma} = 0, F_{1A}^{Z}$$

$$F_{2V}^{\gamma},\,F_{2V}^{Z}$$

SM correction to Born process

NLO electroweak

- Well behaving perturbation series
- Small scale uncertainties <1%
- Size of next correction expected to be Smaller than 0.3% at 500 GeV
- Sizeable electroweak corrections to AFB (~15%)
- (To my knowledge) no estimation of size of next (i.e. NNLO correction) needed for precision physics !(?)

√s/GeV

The International Linear Collider ILC

Linear Electron-Positron Collider

Total footprint 31 km

Technology for main linac

Superconductive RF cavity

ITRP Recommendation 2004

Main parameters

- √s adjustable from
 91 500 GeV
- Luminosity $\rightarrow \int Ldt$ = 500 fb⁻¹ in 4 years
- Ability to scan between 200 and 500 GeV
- Energy stability and precision below 0.1%
- Electron polarisation of at least 80%
 Option: polarised
 Positrons
- The machine must be upgradeable to 1
 TeV

→ Technical design report published in 2013 → R&D Project for higher energies CLIC

The ILD concept

Detector Baseline Design 2013 – Based on full detector simulation

Elements of top quark reconstruction

Three different final states:

1) Fully hadronic (46.2%) \rightarrow 6 jets

2) Semi leptonic (43.5%) → 4 jets + 1 charged lepton and a neutrino

3) Fully leptonic (10.3%) \rightarrow 2 jets + 4 leptons

Final state reconstruction uses all detector aspects

Discussion of pile up

Main source of pile up: γγ -> hadrons ILC about 1.7 evts. / bunchXing (including muons)

Study of different jet algorithms: Example polar angle of W boson

- "Traditional" e+e- jet algorithm fails to remove hadron background

- Successful removal using k_{τ} algorithm (hadron collider algorithm)

Efficiency to find decay lepton: ~85% (e mu only), ~70% (e, mu, tau)

B tagging

 Vertex detector → measure offset, multiplicity and mass of jets to separate b from c decays

Clean e⁺e⁻ environment allow for efficient b-tagging

Reconstruction of top quark production angle

Measurement of top quark polarisation

Measure angle of decay lepton in <u>top quark rest frame</u> Lorentz transformation benefits from well known initial state (N.B. : Proposal for hadron colliders applied to lepton colliders)

Differential decay rate

 $\frac{1}{\Gamma}\frac{d\Gamma}{dcos\theta_\ell} = \frac{1+\lambda_t cos\theta_\ell}{2} \ \, {\rm with} \ \, \lambda_t = 1 \, {\rm for} \, {\rm t_R} \, {\rm and} \, \lambda_t = 1 \, {\rm for} \, {\rm t_L}$

Slope measures fraction of $t_{R,I}$ in sample

- Measurement of decay lepton almost 'trivial' at LC High reconstruction efficiency for leptons
 Reconstructed slope coincides
- with generated slope

Slope λ_{t} can be measured to an accuracy of about 3-4%

Discussion of potential systematic uncertainties

- Luminosity: Critical for cross section measurements Expected precision 0.1% @ 500 GeV
- Beam polarisation: Critical for asymmetry measurements Expected to be known to 0.1% for e- beam and 0.35% for e+ beam
- Beamstrahlung/Beamenergy spread: uncritical
- Migrations/Ambiguities: Critical for A_{FR}:

Need further studies but expect to control them better than the theoretical error Remedy may come from b charge measurement

- Other effects: b-tagging, passive material etc. LEP1 claims 0.2% error on R_{h} -> guiding line for LC

Under discussion with theory groups:

- Role of single top production (15% of 6f final state)
- Electroweak NLO predictions (Correction LO \rightarrow NLO \sim 15%)

Results of full simulation study for DBD at $\sqrt{s} = 500$ GeV

Arxiv: 1307.1802

Precision: cross section ~ 0.5%, Precision $A_{_{FR}}$ ~ 2%, Precision $\lambda_{_{f}}$ ~ 3-4%

Accuracy on CP conserving couplings

- ILC might be up to two orders of magnitude more precise than LHC ($\sqrt{s} = 14$ TeV, 300 fb⁻¹) **Disentangling** of couplings for ILC **one variable at a** time For LHC
- However LHC projections from 8 years old study
- Strong encouragement to update these numbers!

First step is Phys. Rev. Lett. 110 (2013) 172002 by CMS

- Potential for CP violating couplings at ILC under study

ILC will be indeed high precision machine for electroweak top couplings

First result on ttV by CMS

 $\sigma(t\bar{t}Z) = 0.28^{+0.14}_{-0.11} \text{ (stat.)} {}^{+0.06}_{-0.03} \text{ (syst.)} \text{ pb}$

- Promising result N.B. NLO QCD has 10% uncertainty
- How will it evolve with higher Luminosity? Can entire uncertainty sys. + theor. get down to 10%
- Revision of 'old' estimations of precisions are needed!

Discussion of precisions (IFIC/LAL [F. Richard])

Models realising Top/Higgs compositeness and/or extra dimensions

Variety of models predicting modifications to tL and tR due to couplings to new strong sector

Sensitivities and constraints

Model	dtR/tR %	dtL/tL %	dσZtt/σZtt %	LEP1
Carena	0	-20	-30% -3 sd	ОК
Djouadi	-80	-1	-16%	-60
Gherghetta	-20	-20	-36% -3.6 sd	-15 for tL
Grojean	0	10	17%	ОК
Hosotani	18	-7	-5%	ОК
Little Higgs	2.2	-30	-32% -3 sd	-25
Pomarol	0	-20	-37% -3.7 sd	ОК
Wulzer	50	25	68% 7 sd	NO

Assumption: $rac{\delta \sigma_{t ar{t} Z}}{\sigma_{t ar{t} Z}} \sim 10\%$

LEP constraints: $|\delta F^Z_{1A}| < 0.2, Q_{t_L} \rightarrow Q^{SM}_{t_L}$

=> LHC may see deviations but cannot distinguish Models
=> ILC will be able to distinguish at several sigma level

Summary and outlook

- The ILC is the right machine for precision top physics
 First machine to produce top pairs in electroweak production!!!
 Essential pillar of ILC physics program
- Full simulation available for ILC detectors (here ILD)
 => Great deal of realism and confidence in perspectives
- Precision on form factors of the order of 1%

No sign ambiguity Large separation power between models!

- Main experimental issues is control of migrations in A_{FR}

... but keeping the promises is maybe biggest challenge in coming years

 Need close contact with theory groups EW NNLO for AFB Role of single top production Reliable generators

Full exploitation of top program at ILC requires a sustained program over many years

Backup

The solid pillars of the LC physics program

Top quarkW BosonHiggs Boson

Discovered 1995 at Tevatron Discovered 1979 at SPS

LHC and ILC are/would be Top factories Mass precisely at Tevatron LHC and ILC are/would be W factories

Discovered 2012 at LHC

LHC and ILC are/would be Higgs factory

Equations for cross section, A_{FB} and F_{R}

$$\sigma_I = 2\mathcal{A}N_c\beta \left[(1+0.5\gamma^{-2})(\mathcal{F}_{1V}^I)^2 + (\mathcal{F}_{1A}^{I'})^2 + 3\mathcal{F}_{1V}^I\mathcal{F}_{2V}^I \right],$$

$$(A_{FB}^{t})_{I} = \frac{-3\mathcal{F}_{1A}^{I'}(\mathcal{F}_{1V}^{I} + \mathcal{F}_{2V}^{I})}{2\left[(1+0.5\gamma^{-2})(\mathcal{F}_{1V}^{I})^{2} + (\mathcal{F}_{1A}^{I'})^{2} + 3\mathcal{F}_{1V}^{I}\mathcal{F}_{2V}^{I}\right]},$$

$$(F_R)_I = \frac{(\mathcal{F}_{1V}^I)^2 (1 + 0.5\gamma^{-2}) + (\mathcal{F}_{1A}^{I'})^2 + 2\mathcal{F}_{1V}^I \mathcal{F}_{1A}^{I'} + \mathcal{F}_{2V}^I (3\mathcal{F}_{1V}^I + 2\mathcal{F}_{1A}^{I'}) - \beta \mathcal{F}_{1V}^I \Re \mathfrak{e}(\mathcal{F}_{2A}^I)}{2 \left[(1 + 0.5\gamma^{-2}) (\mathcal{F}_{1V}^I)^2 + (\mathcal{F}_{1A}^{I'})^2 + 3\mathcal{F}_{1V}^I \mathcal{F}_{2V}^I \right]}$$

Why high(er) energies - e.g. 500 GeV

- Cross section close to maximum, $A_{_{FR}}$ well developed
- Other remarks: Need some velocity to get sensitive to chiral obervables (see backup slides)

Input to study

- Event generator WHIZARD interfaced to PYTHIA $e^+e^- \rightarrow 6f$: 250 fb⁻¹ for two beam polarisations: $e_L^- e_R^+$ and $e_R^- e_L^+$

Events were generated with full simulation and results were scaled for realistic beam polarisation $P, P' = \mp 0.8, \pm 0.3$

$$\sigma_{P,P'} = \frac{1}{4} \left[(1 - PP')(\sigma_{LR} + \sigma_{RL}) + (P - P')(\sigma_{RL} - \sigma_{LR}) \right]$$

Full Standard Model background Common samples for ILD and SiD studies

- GEANT4 and ILCSoft for detector simulation and reconstruction
- ILD features a full software suite
 - Mokka as geometry interface to GEANT4
 - MARLIN as analysis framework for event reconstruction
 - Interface to toolkits such as PandoraPFA or LCFIVertex
- Detector simulation is based on input from worldwide detector R&D

Reconstruction of top quark production angle

Remedies to address ambiguities: Select cleanly reconstructed events by kinematic fit or Chi2 analysis (so far applied) Measure the b quark charge ("Golden way", to be pursued further)

- Can one really speak about a ttbar cross section?
- If only 6f is relevant: What are relations to ttX couplings?
- What selection cuts are (theoretically) save?

Top mass spectrum in continuum – 500 GeV CLIC study but results very similar for ILC – L=100 fb-1

- (Almost) background free measurement

