Pixelization at the Cosmic Frontier

Clarence Chang Argonne National Lab

CSS 2013 / Snowmass on the Mississippi

Thick CCDs and the Cosmic Frontier

• Dark Energy

Dark Matter •

DAMIC

http://www.cbpf.br/~icrc2013/papers/icrc2013-1243.pdf

Needs at the Cosmic Frontier

Can't change flux of energy from the cosmos!

- Can only change how (and how much) is measured
- Three ingredients:
 - Increasing spatial instrumentation (larger volumes/areas, increased granularity)
 - Increasing energy bandwidth
 - Increasing readout throughput

New ideas for Instrumentation R&D

- New technology with superconducting detectors
- Commercially available cryogenics (especially cryogen free systems), "worry free" operation
- Long history of R&D. Understanding of the fundamental of the technology is "mature"
- Focus on HEP applications... large and very large arrays of superconducting detectors

Superconducting detectors and Dark Matter

- Transition Edge Sensor (TES) invented by HEP for Dark Matter
- Future R&D involves:
 - Increasing target mass (bigger detectors, more detectors)
 - Lowering energy threshold

Superconducting detectors and CMB

 TES bolometers have led to a milestone achievement, <u>first observation of</u> <u>CMB B-mode polarization</u> (<u>http://arxiv.org/abs/1307.5830</u>)

• Expand optical bandwidth to 3 octaves (vs 45%)

Superconducting detectors and Dark Energy

- Kinetic Inductance Detectors for simultaneous imaging and spectroscopy (spectrophotometry)
- Potential to extend to longer wavelengths (0.1 meV quanta vs 1.1 eV for semiconductor)

A new and broader approach?

Dark Matter

Reduce thresholdIncrease mass

- Larger focal plane
- Increase optical bw

Dark Energy

Imaging & Spec.Extend IR sensitivity

Cross-cutting resources

Dark Matter

Reduce thresholdIncrease mass

- •Larger focal plane
- Increase optical bw

Dark Energy

Imaging & Spec.Extend IR sensitivity

Cryogenic systems Thin film deposition Micromachining Microwave electronics

Cross-cutting applications and solutions

Microwave SQUID Multiplexer Readout

New opportunities

- Combine CDMS-type detectors with mKID technology for a "CDMS-inspired" GX? detector
 - Fully exploit phonon-based event reconstruction
 - Maybe cheaper fab?
- Build CMB bolometer technology into beta-decay micro-calorimeter for Cosmic Neutrino Background detection
- Extend low-threshold CDMS detectors to coherent neutrino scattering

Superconducting Detector Instrumentation R&D

- Cosmic Frontier needs new detectors with increased spatial instrumentation, increased energy bandwidth, and increased readout throughput
- Superconducting detector technology has matured where R&D of large superconducting detector arrays can address these needs for DM, CMB, and DE
- Benefits from sharing limited access/expensive resources (reduced cost), diversified applications (reduce risk and new opens new opportunities), exchange of ideas (improved problem solving)
- There is no other program like this for HEP. Success with any single application would provide unique HEP leadership for that application. Resonates with similar programs for NASA.

Other ideas?

- SiPM arrays
 - potential applications for UHECR and gamma rays
 - need large arrays with low power and high bandwidth DAQ
 - ASIC readouts