

Intensity Frontier Overview

HEP and the Frontiers

The Frontiers represent experimental approaches

Shows multi-pronged approach to search for new physics

- Direct Searches
- Precision Measurements
- Rare and Forbidden Processes
- Fundamental Properties of Particles and Interactions
- Cosmological observations

The Intensity Frontier

Exploration of Fundamental Physics with

- intense sources
- ultra-sensitive, sometimes very massive, detectors

Intensity frontier science searches for

- Extremely rare processes
- Tiny deviations from Standard Model predictions

Precision measurements that indirectly probe quantum effects

Extends outside of HEP – Nuclear Physics sponsors some programs

The Intensity Frontier Program

The Intensity Frontier is a broad and diverse, yet connected, set of science opportunities

The Intensity Frontier Program

The Intensity Frontier is a broad and diverse, yet connected, set of science opportunities

CSS13 Intensity Frontier Working Groups

Quark Flavor Physics: Joel Butler, Zoltan Ligeti, Jack Ritchie

Charged Lepton Processes Brendan Casey, Yuval Grossman, David Hitlin

Neutrinos Andre deGouvea, Kevin Pitts, Kate Scholberg, Sam Zeller

Baryon Number Violation Kaladi Babu, Ed Kearns

New Light, Weakly Coupled Particles Rouven Essig, John Jaros, William Wester

Nucleons, Nuclei & Atoms Krishna Kumar, Z.-T. Lu, Michael Ramsey-Musolf K, D & B Meson decays/properties

Precision measurements with muons, taus

All experiments for properties of neutrinos. Accelerator & non-accel.

Proton decay, Neutron Oscillation

"Dark" photons, paraphotons, axions, WISPs

Properties of nucleons, nuclei or atoms (EDM), as related to HEP

CSS13 Working Groups

Quark Flavor Physics: Joel Butler, Zoltan Ligeti, Jack Ritchie

Charged Lepton Processes Brendan Casey, Yuval Grossman, **David Hitlin**

. conveners for doing Neutrinos Andre deGouvea, Kevin Pitts, Kate Scholberg, Sam Zeller

Baryon Number Violation Kaladi Babu, Ed Kearp

New Light, Weak **Coupled Partiv** 10 OUI Rouven Ess n Jaros, William

Nue Nuclei & Atoms Kumar, Z.–T. Lu, Michael Ramsey-Musolf

last 2 years K, D & B Mes ne decays/p **é**asurements Prec ons, taus nero

0 All experiments for properties of neutrinos. Accelerator & non-accel.

Proton decay, Neutron Oscillation

"Dark" photons, paraphotons, axions, WISPs

Properties of nucleons, nuclei or atoms (EDM), as related to HEP

Intensity Frontier Workshop

Fundamental Physics at the Intensity Frontier : Rockville, MD Nov 30–Dec 2, 2011

Charge:

Document the science opportunities at the Intensity Frontier, Identify experiments and facilities needed for components of program

arXiv:1205.2671 Defines Intensity Frontier Focus mainly on opportunities for this decade

All-hands Intensity Frontier meeting, Argonne National Lab, April 2013 Numerous subgroup meetings during the last year

Intensity Frontier Science

- The Intensity Frontier addresses fundamental questions:
- Are there sources of CP Violation beyond θ_{CKM} ?
- Is there CP Violation in the leptonic sector?
- What are the properties of the neutrino?
- Do the forces unify?
- Is there a weakly coupled Hidden Sector and is it linked to the Dark Side?
- Are apparent symmetries (B,L) violated at high scales?
- What can we learn about the flavor sector of new physics? What is the new physics mass scale?

Exploring High Energy Scales

 Precision measurements @ Intensity Frontier explore high mass scales via indirect effects

Flavor Physics: New physics & SM both appear @ loop-level

$$\mathcal{A} = \mathcal{A}_0 \left[\frac{c_{SM}}{M_W^2} + \frac{c_{NP}}{\Lambda^2} \right]$$

Neutrinos: Only Dim-5 operator allowed by SM symmetries

$$\frac{1}{\Lambda}(y_{\nu}LH)(y_{\nu}LH) + h.c.$$

Power of Expedition

New Physics Flavor Problem

New physics is constrained by flavor physics observables

$$\mathcal{L}_{\rm eff} = \mathcal{L}_{\rm SM} + \frac{C_{\rm NP}}{\Lambda^2} O_{ij}$$

ΔF=2		Bounds on Λ [TeV] ($C = 1$)		Bounds on $C \ (\Lambda = 1 \mathrm{TeV})$		Obsorwables
Operator		Re	Im	Re	Im	Observables
$(ar{s}_L \gamma^\mu d_L)^2$		$9.8 imes 10^2$	$1.6 imes 10^4$	$9.0 imes 10^{-7}$	$3.4 imes 10^{-9}$	$\Delta m_K; \epsilon_K$
$(ar{s}_Rd_L)(ar{s}_Ld_R$	R)	$1.8 imes 10^4$	$3.2 imes 10^5$	$6.9 imes 10^{-9}$	2.6×10^{-11}	$\Delta m_K; \epsilon_K$
$(ar{c}_L\gamma^\mu u_L)^2$		$1.2 imes 10^3$	$2.9 imes 10^3$	$5.6 imes 10^{-7}$	$1.0 imes 10^{-7}$	$\Delta m_D; q/p , \phi_D$
$(ar{c}_R u_L)(ar{c}_L u_R$	R)	$6.2 imes 10^3$	$1.5 imes 10^4$	$5.7 imes 10^{-8}$	$1.1 imes 10^{-8}$	$\Delta m_D; q/p , \phi_D$
$(ar{b}_L\gamma^\mu d_L)^2$		$6.6 imes10^2$	$9.3 imes 10^2$	$2.3 imes 10^{-6}$	$1.1 imes 10^{-6}$	$\Delta m_{B_d};S_{\psi K_S}$
$(ar{b}_R d_L)(ar{b}_L d_R$	₂)	$2.5 imes 10^3$	$3.6 imes10^3$	$3.9 imes 10^{-7}$	$1.9 imes 10^{-7}$	$\Delta m_{B_d};S_{\psi K_S}$
$(ar{b}_L\gamma^\mu s_L)^2$		$1.4 imes 10^2$	$2.5 imes 10^2$	$5.0 imes 10^{-5}$	$1.7 imes 10^{-5}$	$\Delta m_{B_s};S_{\psi\phi}$
$(ar{b}_Rs_L)(ar{b}_L s_R$	2)	$4.8 imes 10^2$	$8.3 imes 10^2$	$8.8 imes 10^{-6}$	$2.9 imes 10^{-6}$	$\Delta m_{B_s};S_{\psi\phi}$

If there is new physics at the TeV scale, its flavor sector is unnatural

Status of the CKM Fit

- The level of agreement between the measurements is often misinterpreted
- Allowed region is much larger if NP is included in the fit, more parameters, which changes the fit completely
- O(20%) NP contributions to most loop processes (FCNS) are still allowed

Need experimental precision and theoretical cleanliness to increase NP sensitivity

Talk by Z. Ligeti

New Physics in B_{d,s} Mixing

(Assumes CKM unitarity and SM-dominated tree-level decays)

Future Sensitivity: Belle II

	1		
Observable	SM theory	Current measurement	Belle II
	Sivi theory	(early 2013)	$(50\mathrm{ab^{-1}})$
$S(B o \phi K^0)$	0.68	0.56 ± 0.17	± 0.03
$S(B o \eta' K^0)$	0.68	0.59 ± 0.07	± 0.02
$\alpha \text{ from } B \to \pi \pi, \rho \rho$		$\pm 5.4^{\circ}$	$\pm 1.5^{\circ}$
$\gamma \text{ from } B o DK$		±11°	$\pm 1.5^{\circ}$
$S(B o K_S \pi^0 \gamma)$	< 0.05	-0.15 ± 0.20	± 0.03
$S(B o ho \gamma)$	< 0.05	-0.83 ± 0.65	± 0.15
$A_{ m CP}(B o X_{s+d}\gamma)$	< 0.005	0.06 ± 0.06	± 0.02
$A^d_{ m SL}$	$-5 imes 10^{-4}$	-0.0049 ± 0.0038	± 0.001
${\cal B}(B o au u)$	$1.1 imes 10^{-4}$	$(1.64 \pm 0.34) imes 10^{-4}$	$\pm 0.05 imes 10^{-4}$
${\cal B}(B o \mu u)$	$4.7 imes10^{-7}$	$< 1.0 imes 10^{-6}$	$\pm 0.2 imes 10^{-7}$
${\cal B}(B o X_s \gamma)$	$3.15 imes10^{-4}$	$(3.55\pm0.26) imes10^{-4}$	$\pm 0.13 imes 10^{-4}$
${\cal B}(B o X_s\ell^+\ell^-)$	$1.6 imes 10^{-6}$	$(3.66\pm0.77) imes10^{-6}$	$\pm 0.10 imes 10^{-6}$
${\cal B}(B o K u\overline{ u})$	$3.6 imes10^{-6}$	$< 1.3 imes 10^{-5}$	$\pm 1.0 imes 10^{-6}$
$A_{ m FB}(B ightarrow K^* \ell^+ \ell^-)_{q^2 < 4.3{ m GeV^2}}$	-0.09	0.27 ± 0.14	± 0.04
$A_{\rm FB}(B^0 \to K^{*0} \ell^+ \ell^-)$ zero crossing	0.16	0.029	0.008
$ V_{ub} $ from $B \to \pi \ell^+ \nu~(q^2 > 16{\rm GeV^2})$	9% ightarrow 2%	11%	2.1%

Table 1-3. The expected reach of Belle II in 50 ab^{-1} of data for various topical B decay measurements. For comparison, also listed are the standard model expectation and the current best experimental results. For $|V_{ub}|$ we list the fractional error.

Future Sensitivity: LHCb Upgrade

Obcomphie	SM theory	Precision	LHCb	LHCb Upgrade
Observable	uncertainty	as of 2013	$(6.5 { m ~fb^{-1}})$	$(50 { m ~fb^{-1}})$
$2eta_s(B_s o J/\psi\phi)$	~ 0.003	0.09	0.025	0.008
$\gamma(B o D^{(*)}K^{(*)})$	< 1°	8°	4°	0.9°
$\gamma(B_s o D_s K)$	< 1°		$\sim 11^{\circ}$	2°
$eta(B^0 o J/\psi K^0_S)$	small	0.8°	0.6°	0.2°
$2eta_s^{ ext{eff}}(B_s o \phi\phi)$	0.02	1.6	0.17	0.03
$2eta_s^{ ext{eff}}(B_s o K^{*0}ar{K}^{*0})$	< 0.02		0.13	0.02
$2eta_s^{ m eff}(B_s o \phi\gamma)$	0.2%		0.09	0.02
$2eta^{ m eff}(B^0 o \phi K^0_S)$	0.02	0.17	0.30	0.05
$A^s_{ m SL}$	$0.03 imes 10^{-3}$	$6 imes 10^{-3}$	$1 imes 10^{-3}$	$0.25 imes 10^{-3}$
${\cal B}(B_s o \mu^+ \mu^-)$	8%	36%	15%	5%
${\cal B}(B^0 o \mu^+ \mu^-)/{\cal B}(B_s o \mu^+ \mu^-)$	5%		$\sim 100\%$	${\sim}35\%$
$A_{\rm FB}(B^0 \to K^{*0} \mu^+ \mu^-)$ zero crossing	7%	18%	6%	2%

Table 1-4. Sensitivity of LHCb to key observables. The current sensitivity (based on $1-3 \text{ fb}^{-1}$, depending on the measurement) is compared to that expected after 6.5 fb⁻¹ and that achievable with 50 fb⁻¹ by the upgraded experiment assuming $\sqrt{s} = 14 \text{ TeV}$. Note that at the upgraded LHCb, the yield per fb⁻¹, especially in hadronic B and D decays, will be higher on account of the software trigger. (Adapted from Ref. [74].)

Kaon Program

Worldwide goal to achieve precision measurements

Haisch

SM Prediction:

$$B(K^+ \to \pi^+ \nu \overline{\nu}) = (7.81 \pm 0.75 \pm 0.29) \times 10^{-11}$$
$$B(K^0 \to \pi^0 \nu \overline{\nu}) = (2.43 \pm 0.39 \pm 0.06) \times 10^{-11}$$

Theoretically clean decays

Charged mode: NA62: near-term (10% precision) ORKA: Proposed, 1000 events w/ Main Injector

Neutral mode: KOTO: near term (few events) Projected: 5% precision @ Project X

4th generation detector designed around proven techniques

Expect ×100 sensitivity relative to BNL experiment: ×10 from beam and ×10 from detector

Already a very strong collaboration

B. Casey, 8/3/2013

Future Sensitivity: Rare Kaon Decays

Observable	SM Theory	Current Expt.	Future Experiments
$\mathcal{B}(K^+ \to \pi^+ \nu \overline{\nu})$	$7.81(75)(29) \times 10^{-11}$	$1.73^{+1.15}_{-1.05} \times 10^{-10}$	${\sim}10\%$ at NA62
		m E787/E949	${\sim}5\%$ at ORKA
			${\sim}2\%$ at Project-X
${\cal B}(K^0_L o \pi^0 u \overline{ u})$	$2.43(39)(6) \times 10^{-11}$	$< 2.6 \times 10^{-8}$ E391a	1^{st} observation at KOTO
			${\sim}5\%$ at Project-X
${\cal B}(K^0_L o \pi^0 e^+ e^-)$	$(3.23^{+0.91}_{-0.79}) \times 10^{-11}$	$< 2.8 \times 10^{-10}$ KTeV	${\sim}10\%$ at Project-X
${\cal B}(K^0_L o \pi^0 \mu^+ \mu^-)$	$(1.29^{+0.24}_{-0.23}) \times 10^{-11}$	$< 3.8 \times 10^{-10}$ KTeV	${\sim}10\%$ at Project-X
$ P_T $	$\sim 10^{-7}$	< 0.0050	< 0.0003 at TREK
in $K^+ \to \pi^0 \mu^+ \nu$			< 0.0001 at Project-X
$\Gamma(K_{e2})/\Gamma(K_{\mu 2})$	$2.477(1) imes 10^{-5}$	$2.488(12) imes 10^{-5}$	$\pm 0.0054 \times 10^{-5}$ at TREK
		(NA62, KLOE)	$\pm 0.0025 \times 10^{-5}$ at Project-X
${\cal B}(\overline{K^0_L} ightarrow\mu^\pm e^\mp)$	$< 10^{-25}$	$<4.7\times10^{-12}$	$< 2 \times 10^{-13}$ at Project-X

Table 1-2. A summary of the reach of current and proposed experiments for some key rare kaon decay measurements, in comparison to standard model theory and the current best experimental results. In the SM predictions for the $K \to \pi \nu \bar{\nu}$ and $K \to \pi \ell^+ \ell^-$ the first error is parametric, the second denotes the intrinsic theoretical uncertainty.

Charged Lepton Flavor Violation

- Charged Leptons easy to produce & detect
 - ⇒ precise measurements are possible
- Hadronic uncertainties insignificant or controlled by data
- SM rates negligible in some cases so new physics stands out
- Directly probe couplings of new particles to leptons
- Diverse set of independent measurements

Charged Lepton Flavor Violation

95% CL limits in CLFV with muons

Process	Current limit	Expected limit		Expected limit
		5-10 years		10-20 years
$\mu^+ ightarrow e^+ \gamma$	2.4×10^{-12}	1×10^{-13}		1×10^{-14}
	PSI/MEG (2011)	PSI/MEG		PSI, Project X
$\mu^+ \to e^+ e^- e^+$	1×10^{-12}	1×10^{-15}	1×10^{-16}	1×10^{-17}
	PSI/SINDRUM-I (1988)	Osaka/MuSIC	$\mathrm{PSI}/\mu 3e$	PSI, Project X
$\mu^- N \to e^- N$	7×10^{-13}	1×10^{-14}	$6 imes 10^{-17}$	1×10^{-18}
	PSI/SINDRUM-II (2006)	J-PARC/DeeMee	FNAL/Mu2e	J-PARC, Project X

Table 3-1. Evolution of the 95% CL limits on the main CLFV observables with initial state muons. The expected limits in the 5-to-10 year range are based on running or proposed experiments at existing facilities. The expected bounds in the 10-to-20 year range are based on sensitivity studies using muon rates available at proposed new facilities. The numbers quoted for $\mu^+ \to e^+\gamma$ and $\mu^+ \to e^+e^-e^+$ are limits on the branching fraction. The numbers quoted for $\mu^-N \to e^-N$ are limits on the rate with respect to the muon capture process $\mu^-N \to \nu_{\mu}N'$. Below the numbers are the corresponding experiments or facilities and the year the current limit was set.

Charged Lepton Flavor Violation

Model independent reach

Model Determination with Mu2e

If charged lepton flavor violation is discovered, Mu2e can determine the origin!

5% measurement of the ratio Ti/Al needed to discriminate between models Theory uncertainty mainly cancels in ratio

CLFV Timeline

Lepton Flavor Violating Higgs Decays

- Connection between Intensity and Energy Frontiers!
 - » Demonstration of complementarity
- Operator expansion w/ 2-Higgs doublets to generate off-diagonal couplings

Flavor in the LHC Era

New Physics found at LHC

⇒ New particles with unknown flavor- and CP-violating couplings

New Physics NOT found at LHC

Precision flavor-physics expts will be needed sort out the flavor- and CP-violating couplings of the NP. Precision flavor-physics expts will be needed since they are sensitive to NP at mass scales beyond the LHC.

Precision quark-flavor experiments (and lepton-flavor too) are essential.

A healthy U.S. HEP program will include a vigorous flavor-physics component (like Europe and Asia).

Anomalous Magnetic Moment of the Muon

- Discrepancy between exp't and SM at 3.6σ : $\Delta a_{\mu} = 287(80) \times 10^{-11}$
- Ring has arrived at Fermilab
 » Run begins 2016/17

- Lattice/analytic results can reduce theory uncertainty
 - » How well can this be calculated?

Van de Water

QED (4 loops) & EW (2 loops)

HVP: Theory error reduced to 2% due to theoretical improvements and more CPU on timescale of exp't Hadronic vacuum polarization (HVP):

from experimental result for e⁺e⁻→ hadrons plus dispersion relation Hadronic light-bylight (HLbL)

estimated from models such as large N_c, vector meson

HLBL: 15% precision possible, but not guaranteed. Lattice community working hard!

Low–Energy EW Precision Tests

Test running of weak mixing angle in new generation of low-energy parity violation exp'ts

Current and future measurements

Future: indicate expected errors and value of µ

Details in talk by Ramsey-Musolf

Electric Dipole Moments

Electric dipole moments:

Program in place to measure all

See talk by Ramsey-Musolf for more details! Neutrons CKM-theory: $10^{-31} e \operatorname{cm}$ Exp: $<2.9 \times 10^{-26} e \operatorname{cm} \rightarrow 5 \times 10^{-28} e \operatorname{cm}$ $2018 \rightarrow 10^{-28} e \operatorname{cm}$ Nucleus (Hg) CKM-theory: $10^{-33} e \operatorname{cm}$ Exp: $<10^{-27} e \operatorname{cm} \rightarrow 10^{-32} e \operatorname{cm}$ Electrons (cold molecules of YbF, ThO possible Fr) CKM-theory: $10^{-38} e \operatorname{cm}$ Exp: $<1.05 \times 10^{-27} e \operatorname{cm} \rightarrow 3 \times 10^{-31} e \operatorname{cm}$

Excellent probes of new physics!

EDMs SM current limit Project X electron $\sim 10^{-38} e \,\mathrm{cm}$ $\sim 10^{-30} e \, {\rm cm}$ $1.0 \times 10^{-27} e \,\mathrm{cm}$ $1.1 \times 10^{-19} e \,\mathrm{cm}$ $\sim 10^{-35} e \, {\rm cm}$ $\sim 10^{-23} e \, {\rm cm}$ muon $\sim 10^{-31} e \, {\rm cm}$ $2.9 \times 10^{-26} e \,\mathrm{cm}$ $\sim 10^{-29} e \, {\rm cm}$ neutron $\sim 10^{-31} e \, {\rm cm}$ $6.5 \times 10^{-23} e \,\mathrm{cm}$ $\sim 10^{-29} e \, {\rm cm}$ proton $3.1 \times 10^{-29} e \,\mathrm{cm} \,(^{199} \mathrm{Hg})$ $\sim 10^{-33} e \,\mathrm{cm} \,(^{199} \mathrm{Hg})$ $\sim 10^{-29} e \,\mathrm{cm} \,(^{225} \mathrm{Ra})$ nuclei

Table 2: SM predictions and current and expected limits on selected examples of EDMs.

* Also sensitive to CPV in $h\gamma\gamma$ from NP:

Harnik

$$c_{\gamma} \frac{\alpha}{\pi v} h F_{\mu\nu} F^{\mu\nu} + \tilde{c}_{\gamma} \frac{\alpha}{2\pi v} h F_{\mu\nu} \tilde{F}^{\mu\nu} \longrightarrow \phi_{\gamma} \lesssim 0.01 - 0.1$$

$$\overset{\sim hF\tilde{F}}{\sim} McKeen, Pospelov, Ritz$$
(1208.4597)

edm's and SUSY

pMSSM benchmark points

- 19 weak-scale parameters
- No high-scale assumptions
- All sparticle masses < 4 TeV
- All points consistent with global data set
- Assume MFV → perform expansion in MFV
- Scan over phases

Same points studied across all 3 frontiers!!

Low fine-tuning models Survive 300 fb⁻¹ @ 14 TeV LHC Survive 3 ab⁻¹ @ 14 TeV LHC

Staging of Project X

Example Project X Research Program

Tschirhart, SLAC Summer Institute

Program:	Onset of NOvA operations in 2013	Stage-1: 1 GeV CW Linac driving Booster & Muon, n/edm programs	Stage-2: Upgrade to 3 GeV CW Linac	Stage-3: Project X RDR	Stage-4: Beyond RDR: 8 GeV power upgrade to 4MW
MI neutrinos	470-700 kW**	515-1200 kW**	1200 kW	2450 kW	2450-4000 kW
8 GeV Neutrinos	15 kW +0-50kW**	0-42 kW* + 0-90 kW**	0-84 kW*	0-172 kW*	3000 kW
8 GeV Muon program e.g, (g-2), Mu2e-1	20 kW	0-20 kW*	0-20 kW*	0-172 kW*	1000 kW
1-3 GeV Muon program, e.g. Mu2e-2		80 kW	1000 kW	1000 kW	1000 kW
Kaon Program	0-30 kW** (<30% df from MI)	0-75 kW** (<45% df from MI)	1100 kW	1870 kW	1870 kW
Nuclear edm ISOL program	none	0-900 kW	0-900 kW	0-1000 kW	0-1000 kW
Ultra-cold neutron program	none	0-900 kW	0-900 kW	0-1000 kW	0-1000 kW
Nuclear technology applications	none	0-900 kW	0-900 kW	0-1000 kW	0-1000 kW
# Programs:	4	8	8	8	8
Total max power:	735 kW	2222 kW	4284 kW	6492 kW	11870kW

* Operating point in range depends on MI energy for neutrinos.

** Operating point in range depends on MI injector slow-spill duty factor (df) for kaon program.

The Nature of Neutrinos

- Our questions are very fundamental
 - what is the absolute neutrino mass scale
 - are neutrinos Majorana or Dirac?
 - what is the neutrino mass ordering?
 - is CP violated in the neutrino sector?
 - to what extent does the 3n paradigm describe nature?
 - are there hints of new physics in existing data?
 - what new knowledge will neutrinos from astrophysical sources bring?
- We know this information for every other particle!
- We know more about the Higgs than we do about neutrinos

The Nature of Neutrinos

André de Gouvêa

Northwestern

On Electroweak Symmetry Breaking

The LHC has revealed that the minimum SM prescription for electroweak symmetry breaking — the one Higgs double model — is at least approximately correct. What does that have to do with neutrinos?

The tiny neutrino masses point to three different possibilities.

- 1. Neutrinos talk to the Higgs boson very, very **weakly** (Dirac neutrinos);
- 2. Neutrinos talk to a **different Higgs** boson there is a new source of electroweak symmetry breaking! (Majorana neutrinos);
- 3. Neutrino masses are small because there is **another source of mass** out there — a new energy scale indirectly responsible for the tiny neutrino masses, a la the seesaw mechanism (Majorana neutrinos).

Searches for $0\nu\beta\beta$ help tell (1) from (2) and (3), the LHC and charged-lepton flavor violation may provide more information.

Searches for nucleon decay provide the only handle on a new energy scale (3) if that new scale happens to be very small. Unique capability!

Neutrino Sources

many sources *→* many experimental opportunities

The Future-What Would WE Like to Learn?

- How many neutrino flavors, active and sterile, are there? Equivalently, how many neutrino mass eigenstates are there?
- · What are the masses, Mym, of the mass eigenstates, ym?
- Are the neutrinos of definite mass-* Majorana particles (Jm=Vm), or
 - * Dirac particles $(\overline{\nu}_m \neq \nu_m)$?
- How big are the elements Ulm of the leptonic (MNS) mixing matrix?
 Are there several big mixing angles?
 Do the Ulm contain LP phases ?

Snowmass 2001

 neutrino summary from Snowmass 2001 (Boris Kayser)

parameter	best fit	1σ range	2σ range	3σ range
$\Delta m^2_{21} \ [10^{-5} { m eV}^2]$	7.62	7.43-7.81	7.27-8.01	7.12-8.20
$\Delta m^2_{31} [10^{-3} { m eV}^2]$	2.55 2.43	2.46 - 2.61 2.37 - 2.50	2.38 - 2.68 2.29 - 2.58	2.31 - 2.74 2.21 - 2.64
$\sin^2 heta_{12}$	0.320	0.303–0.336	0.29–0.35	0.27–0.37
$\sin^2 heta_{23}$	$0.613 \ (0.427)^a \ 0.600$	0.400-0.461 & 0.573-0.635 0.569-0.626	0.38–0.66 0.39–0.65	0.36–0.68 0.37–0.67
$\sin^2 heta_{13}$	$0.0246 \\ 0.0250$	0.0218 - 0.0275 0.0223 - 0.0276	0.019–0.030 0.020–0.030	0.017–0.033
δ	0.80π -0.03π	$0-2\pi$	$0-2\pi$	$0-2\pi$

(arXiv:1205.4018)

Neutrino Oscillations

we have made much of progress ...

- experiments with solar,
 atmospheric, accelerator,
 and reactor v's have clearly
 demonstrated that v's oscillate
- we see the characteristic L/E pattern in multiple sources & experiments

The new era of precision neutrino physics

• We are entering the era of precision neutrino physics

Neutrino Oscillations

- Successful measurement of the last mixing angle (θ_{13}) has recently provided some important clarity
- → we now know where we want to go
- We have a clear path forward both for precision tests of the 3-flavor paradigm and exploration of anomalies building off of these successes

There is an established program to measure the CP violating phase, mass heirarchy and $0\nu\beta\beta$

 Given the challenges associated with precision measurements in the neutrino sector, complementary baselines, sources, and detection techniques will be required to piece together a sharp picture, as well as probe new phenomena

Neutrino Oscillations

- The U.S. with the Long-Baseline Neutrino Experiment (LBNE) and a future multi-megawatt beam from Project-X is uniquely positioned to lead an international campaign to test the 3-flavor paradigm, measure CP violation and go beyond.
- An underground location for a far detector significantly enhances the physics breadth & allows for the study of atmospheric v's, nucleon decay, & precision measurement of v's from a galactic supernova explosion

This is now considered phase I

 Next-next generation experiments will require a qualitatively better neutrino beam. Options include neutrinos from muon storage rings (NuMAX) and very intense sources of pion decay at rest (DAEδALUS)

Mass hierarchy

- MH determination by long-baseline experiments "guaranteed" with sufficient exposure
- Other possibilities are promising; systematics challenging
 - PINGU IceCube infill: atmospheric neutrinos
 - JUNO/RENO-50 reactor experiments
- There could also be information from cosmology

CP Violation @ LBNE and Hyper-K

LBNE + Project X enable an era high-precision neutrino oscillation measurements.

Far Future Precision

Opportunities in v Oscillations

Category	Experiment	Status	Osc params
accelerator	T2K	data-taking	MH/CP/octant
accelerator	$NO\nu A$	commissioning	MH/CP/octant
accelerator	RADAR	R&D	MH/CP/octant
accelerator	CHIPS	R&D	MH/CP/octant
accelerator	T2HK	design/ R&D	MH/CP/octant
accelerator	LBNE	design/ R&D	MH/CP/octant
accelerator	$DAE\delta ALUS$	design/ R&D	CP
reactor	JUNO	design/R&D	MH
reactor	RENO-50	design/R&D	MH
atmospheric	Super-K	data-taking	MH/CP/octant
atmospheric	Hyper-K	design/R&D	MH/CP/octant
atmospheric	LBNE	design/R&D	MH/CP/octant
atmospheric	INO	design/R&D	MH/octant
atmospheric	PINGU	design/R&D	MH
atmospheric	ORCA	design/R&D	MH
supernova	existing	N/A	MH

T2HK plays an important role

Study of Neutrino Interactions

- We need to fully characterize neutrino-matter interactions to enable deeper understanding of v oscillations, supernova dynamics, and dark matter searches. Studies of v interactions in themselves also serve as standard model tests and as important probes of nuclear structure.
- These activities can be pursued in "near detectors" associated with large longbaseline projects or alongside R&D projects related to next-next generation neutrino beams.

Neutrino Anomalies

- The confirmation of any of the existing anomalies would change the course of neutrino research, for example by discovering new neutrino states.
- Anomalies can be addressed by variety of experimental approaches, and sources including reactors, accelerators and radioactive isotopes.
- Clarifying the nature of the existing short-baseline neutrino anomalies is important → we need <u>definitive</u> reactor, source, and accelerator-based experiments
- Given the experiments that are already being prepared, we can anticipate significant progress before the next "Snowmass"
 - next 3-5 years: MicroBooNE, MINOS+, radioactive source experiments, new reactor measurements

Next Generation Searches for Sterile v's

	Table 1-5. Proposed sterile neutrino searches.						
Experiment	ν Source	ν Type	Channel	Host	Cost Category 1		
Ce-LAND [194]	$^{144}\text{Ce-}^{144}\text{Pr}$	$\bar{ u}_e$	disapp.	Kamioka, Japan	$small^2$		
Daya Bay Source [195]	$^{144}\text{Ce-}^{144}\text{Pr}$	$ar{ u}_e$	disapp.	China	small		
SOX [196]	$^{51}\mathrm{Cr}$	$ u_e$	disapp.	LNGS, Italy	$small^2$		
	$^{144}\text{Ce-}^{144}\text{Pr}$	$ar{ u}_e$	disapp.				
US Reactor [197]	Reactor	$\bar{\nu}_e$	disapp.	US^3	small		
Stereo	Reactor	$ar{ u}_e$	$\bar{\nu}_e$ disapp. ILL, France		NA^4		
DANSS [198]	Reactor	$ar{ u}_e$	disapp.	Russia	NA^4		
OscSNS [199]	π -DAR	$ar{ u}_{\mu}$	$\bar{\nu}_e$ app.	ORNL, US	medium		
LAr1 [200]	$\pi ext{-DIF}$	$\overset{(-)}{ u_{\mu}}$	$\stackrel{\scriptscriptstyle(-)}{\nu_e}$ app.	Fermilab	medium		
MiniBooNE+ 201	$\pi ext{-DIF}$	$\overset{(-)}{ u_{\mu}}$	$\stackrel{\scriptscriptstyle(-)}{\nu_e}$ app.	Fermilab	small		
MiniBooNE II 202	$\pi ext{-DIF}$	$\overset{(-)}{ u_{\mu}}$	$\stackrel{\scriptscriptstyle(-)}{\nu_e}$ app.	Fermilab medium			
ICARUS/NESSiE [203]	$\pi ext{-DIF}$	$\overset{(-)}{ u_{\mu}}$	$\stackrel{(-)}{\nu_e}$ app.	CERN	NA^4		
IsoDAR [96]	⁸ Li-DAR	$ar{ u}_e$	disapp.	Kamioka, Japan	medium		
ν STORM [147]	μ Storage Ring	$\overset{\scriptscriptstyle(-)}{ u_e}$	$\stackrel{\scriptscriptstyle(-)}{\nu_{\mu}}$ app.	Fermilab/CERN	large		

¹ Rough recost categories: small: <\$5M, medium: \$5M-\$50M, large: \$50M-\$300M.

² US scope only.

³ Multiple sites are under consideration [204].

⁴ No US participation proposed.

There are many good ideas for next steps. Choices will have to be made

Rough scales for future experiments...

Small	Medium	Large
OscSNS, CSISNS, CENNS, RICOCHET, US reactor, WATCHMAN, CAPTAIN, MiniBooNE+/ II, SciNOvA, PTOLEMY, SOX, CeLAND, DANSS, Stereo	LENS, PINGU, RADAR, CHIPS, LAr1, NuStorm, Project 8, IsoDAR, ARA, ARIANNA, EVA, JUNO, RENO-50, INO, Daya Bay Source, ORCA	LBNE, DAEδALUS, NUMAX, Hyper-K, LAGUNA

Bold means "US-based"

Important to have experiments at a variety of scales for a robust program

Nature of the Neutrino

- Neutrinoless double beta decay (0vββ) search experiments are critical as the only realistic way to elucidate a key part of the picture: the question of whether neutrinos are Majorana or Dirac fermions.
- The current generation of 100-kg-class neutrinoless double beta decay search experiments should reach effective masses in the 100 meV range; beyond that, there are opportunities for multi-ton-class experiments that will reach sub 10 meV effective mass sensitivity, pushing below the inverted hierarchy region.

Goals for Next Generation 0vßß

- next generation 0vββ experiments must cover the entire allowed region of the inverted hierarchy
- also allows us to pick a technology for the future
- ideas for probing the normal hierarchy exist

(L. Kaufman, Thursday session)

Ονββ Experiments and Proposals

						_
Experiment	Isotope	Mass	Technique	Status	Location	
AMoRE[125, 126]	¹⁰⁰ Mo	50 kg	CaMoO ₄ scint. bolometer crystals	Devel.	Yangyang	
CANDLES 127	⁴⁸ Ca	0.35 kg	CaF_2 scint. crystals	Prototype	Kamioka	(!
CARVEL 128	⁴⁸ Ca	1 ton	CaF_2 scint. crystals	Devel.	Solotvina	
COBRA 129	¹¹⁶ Cd	183 kg	^{enr} Cd CZT semicond. det.	Prototype	Gran Sasso	
CUORE-0[114]	¹³⁰ Te	11 kg	TeO_2 bolometers	Constr. (2013)	Gran Sasso	
CUORE 114	¹³⁰ Te	203 kg	TeO_2 bolometers	Constr. (2014)	Gran Sasso	
DCBA130	¹⁵⁰ Ne	20 kg	^{enr} Nd foils and tracking	Devel.	Kamioka	
EXO-200[115], 116]	¹³⁶ Xe	200 kg	Liq. ^{enr} Xe TPC/scint.	Op. (2011)	WIPP	
nEXO[117]	¹³⁶ Xe	5 t	Liq. ^{enr} Xe TPC/scint.	Proposal	SNOLAB	
GERDA[131]	⁷⁶ Ge	$\approx 35 \text{ kg}$	^{enr} Ge semicond. det.	Op. (2011)	Gran Sasso	
GSO[132]	160 Gd	2 t	Gd ₂ SiO ₅ :Ce crys. scint. in liq. scint.	Devel.		
KamLAND-Zen[118, 120]	¹³⁶ Xe	400 kg	^{enr} Xe dissolved in liq. scint.	Op. (2011)	Kamioka	
LUCIFER [133, 134]	⁸² Se	18 kg	ZnSe scint. bolometer crystals	Devel.	Gran Sasso	
MAJORANA [111, 112, 113]	⁷⁶ Ge	30 kg	^{enr} Ge semicond. det.	Constr. (2013)	SURF	
MOON [135]	¹⁰⁰ Mo	1 t	^{enr} Mo foils/scint.	Devel.		
SuperNEMO-Dem 123	⁸² Se	7 kg	^{enr} Se foils/tracking	Constr. (2014)	Fréjus	
SuperNEMO ₁₂₃	⁸² Se	100 kg	^{enr} Se foils/tracking	Proposal (2019)	Fréjus	
NEXT [121, 122]	¹³⁶ Xe	100 kg	gas TPC	Devel. (2014)	Canfranc	
SNO+136, 137, 35	¹³⁰ Te	800 kg	Te-loaded liq. scint.	Constr. (2013)	SNOLAB	

(see Michael Ramsey-Musolf' s talk after the break)

Table 1-4. A summary list of neutrinoless double-beta decay proposals and experiments.

 multiple isotopes and several complementary experiments are needed for confirmation of a signal

significant overlap in technologies/facilities with DM community

Neutrino Mass

- Understanding of absolute neutrino mass is vital for a complete picture of fundamental particle masses, and is crucial information for cosmology and theories of flavor.
- The next generation of tritium-beta-decay experiments will directly probe neutrino masses a factor of 10 smaller the best current bounds; innovative new ideas may help to go beyond this level of sensitivity.

Direct Neutrino Mass Measurements

(Hamish Robertson, Friday session)

Neutrino Mass

- direct neutrino mass measurements are a clean approach to a fundamental physics question
 - Majorana or Dirac
 - no nuclear matrix elements or complex phases
 - no cosmological degrees of freedom
- present laboratory limit $m_v < 1.8 \text{ eV}$ from Mainz/Troitsk
- one experiment under construction now in Karlsruhe, Germany
 KATRIN (2015 start, m_v<0.2 eV)

- three experiments in R&D to push beyond this
 - Project 8
 - ECHo
 - PTOLEMY

Astrophysical Neutrinos

Neutrinos come from natural sources as close as the Earth and Sun, to as far away as distant galaxies, and even as remnants from the Big Bang. They range in kinetic energy from less than one meV to greater than one PeV, and can be used to study properties of the astrophysical sources they come from, the nature of neutrinos themselves, and cosmology.

Low Energy Astrophysical v Detectors

Table 1-6. Summary of low-energy astrophysics detectors. **indicates significant potential, and * indicates some potential but may depend on configuration.

Detector Type	Experiment	Location	Size (kton)	Status	Solar	Geo	Supernova
Liquid scintillator	Borexino	Italy	0.3	Operating	**	**	*
Liquid scintillator	KamLAND	Japan	1.0	Operating	**	**	*
Liquid scintillator	SNO+	Canada	1.0	Construction	**	**	*
Liquid scintillator	RENO-50	South Korea	10	Design/R&D	*	*	**
Liquid scintillator	JUNO (DB II)	China	20	Design/R&D	*	*	**
Liquid scintillator	Hanohano	TBD (USA)	20	Design/R&D	*	**	**
Liquid scintillator	LENA	TBD (Europe)	50	Design/R&D	*	**	**
Liquid scintillator	LENS	USA	0.12	Design/R&D	**		*
Water Cherenkov	Super-K	Japan	50	Operating	**		**
Water Cherenkov	IceCube	South Pole	2000	Operating			**
Water Cherenkov	Hyper-K	Japan	990	Design/R&D	**		**
Liquid argon	LBNE	USA	35	Design/R&D	*		**

High Energy Astrophysical v Detectors

Neutrinos and Cosmology

(S. Dodelson, Wednesday session) See talk by S. Ritz

Grand Unified Models

- Three gauge couplings unify nicely with low-energy SUSY
- SO(10) GUTs predict neutrino masses via seesaw mechanism naturally
- Baryon number violation predicted -- leads to proton decay

SUSY mode: $p \rightarrow \overline{\nu}K^+$ LBNE LAr

Grand Unified Models

Theta(13) in Minimal SO(10)

 $\sin^2 2\theta_{13}$ and CP violating phase δ_N K.S. Babu and C. Macesanu (2005)

 $\sin^2 2\theta_{13} = 0.089 \pm 0.010 \pm 0.005$ Daya Bay (2012)

Proton Decay

au/B (years)

Proton Decay Search Territory

way everyone thinks about the world

Neutron-Antineutron Oscillations

If baryon number is violated by 2 units, Neutronantineutron oscillations can occur $K^0 \rightarrow \overline{K}^0$ gy to mixing:

Oscillation probability can be probed with new expt. at Project X with improved sensitivity of up to 1000 compared

Probes Baryon violation scale of 10⁵ – 10⁶ GeV. Can test low-scale Baryogenesis schemes

New Light Weakly Coupled Particles

Dark Sectors

A dark sector consists of particles that do not interact with known forces

Known Forces strong, weak, EM

Dark Sector forces + particles dark matter?

Essia

unlike matter that interacts with known forces, dark sector particles can be <u>well below</u> Weak-scale

New Light Weakly Coupled Particles

Portals

• "Axion"

$$\frac{1}{f_a} F_{\mu\nu} \tilde{F}^{\mu\nu} a$$

axions & axion-like particles (ALPs)

• "Vector" $\epsilon F^{Y,\mu
u}F'_{\mu
u}$ dark photon A'

• "Higgs" $\lambda H^2 S^2 + \mu H^2 S$ exotic Higgs decays?

• "Neutrino"

 $\kappa (HL)N$

sterile neutrinos?

Ultra-weak Hidden Sectors

Hidden Sector Vector Portal: Couplings to SM small enough to have missed so far, but big enough to find

Theories motivated by cosmic frontier Signatures at Intensity and (Energy) frontiers

Proton-beam based searches

MiniBooNE proposal for sub-GeV DM search

Aguilar-Arevalo et.al. (MiniBooNE proposal)

e.g.
$$m_{\rm DM} = 10 \,\,{\rm MeV}$$

pioneering search for sub-GeV dark matter using a neutrino factory

> relatively inexpensive, no new facility

Axions and Axion-Like Particles

The axion is very highly motivated in the solution to the strong CP problem. Axion-like particles which have a less restricted parameter space are also theoretically well-motivated.

The Axion Dark Matter Experiment (ADMX) is covered in detail in CF3 – a flagship experimental program to search for non-WIMP dark matter. The experiment looks for dark matter axions entering a high Q microwave cavity in a magnetic field and leaving a small signal as the axion coverts into a photon. Each scan probes the QCD axion band over a narrow mass range. The program is to scan over mass (i.e. frequency of the cavity in a particular cavity mode). There is R&D to extend the mass range. This program is also sensitive to axion-like particles.

Intensity Frontier type experiments have searched for axion-like particles using intense laser beams shining through an accelerator magnet ... light shining through a wall. Related are searches for signals by pointing a magnet at and then tracking the sun. Previous generation of experiments set limits comparable to those from astrophysics. The next generation of experiments of both types hope to extend sensitivity in the coupling constant by an order of magnitude of the current best limits covering a region where there are astrophysics hints.

These future experiments are modest in scale. The laser-based resonant axion photon regeneration (REAPR at FNAL or ALPS-II at DESY) experiment requires a ~100 meter string of superconducting magnets (FNAL Tevatron magnets or DESY HERA magnets). The fourth generation International Axion X-ray Observatory (IAXO) is ambitious in its requirement for a custom toroidal magnet.

Axions and Axion-Like Particles

Limit plot on the axion-photon-photon coupling vs axion mass showing the ADMX reaching into the diagonal yellow strong-CP solving QCD axion band. The broad exclusion versus mass around 10⁻¹¹ GeV⁻¹ is the target for REAPR or IAXO.

REAPR (FNAL) or ALPS-II (DESY) would re-do the light shining through a wall experiment with phased locked cavities on both sides of the wall.

IAXO follows upon the successful CAST experiment where a large toroidal magnet is used to track the sun.

Chameleons too!

Wester

Intensity Frontier Science Summary

Rapid progress from last 2 years will continue

Intensity & Cosmic Frontiers

Probe mass scales of possible New Physics with multiple approaches

New light, weakly coupled particles

Particle explanation of Dark Sector

Intensity Frontier Science summary II

- Are there sources of CP Violation beyond θ_{CKM}?
- Is there CP Violation in the leptonic sector?
- What are the properties of the neutrino?

Earlier • Do the questions

- Do the forces unify?
- Is there a weakly coupled Hidden Sector linked to the Dark Side?
- Are apparent symmetries (B,L) violated at high scales?
- What can we learn about the flavor sector of new physics?
- What is the new physics mass scale?
 - Intensity Frontier addresses these questions
 with a diverse and focused program
 - Potential of paradigm-changing discoveries
 - Synergy with other frontiers → stronger HEP program