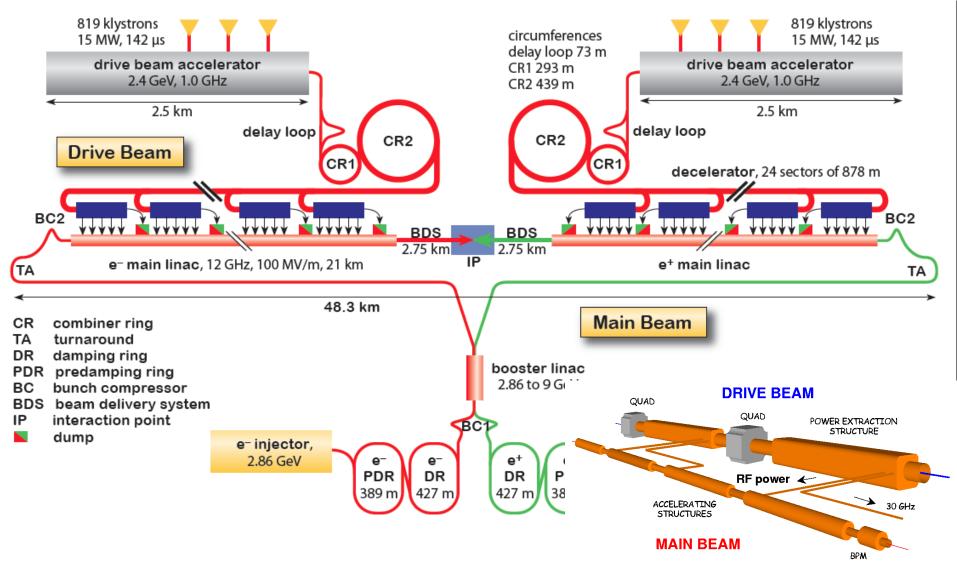
Energies beyond LHC: Technology challenges of high energy lepton colliders

> ILC, CLIC Gamma-gamma Collider Wakefield Accelerator Muon Collider


K.Yokoya (KEK)

2013.8.2. Snowmass on the Mississippi

ILC 1.5TeV (if it is "Beyond LHC")

- Technically, the only problem is the accelerating gradient when the available site length is given
- Development of higher gradient cavities
 - > 45MV/m for 1TeV
 - Cost reduction from 35MV/m is O(10%)
 - Even higher gradient desired for 1.5 TeV

CLIC (CERN Linear Collider)

CLIC Main Parameters

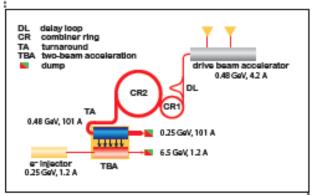
parameter	symbol		
centre of mass energy	E _{cm} [GeV]	500	3000
luminosity	${\cal L}~[10^{34}~{ m cm^{-2}s^{-1}}]$	2.3	5.9
luminosity in peak	$\mathcal{L}_{0.01} \; [10^{34} \; \text{cm}^{-2} \text{s}^{-1}]$	1.4	2
gradient	G [MV/m]	80	100
site length	[km]	13	48.3
charge per bunch	N [10 ⁹]	6.8	3.72
bunch length	$\sigma_{\sf z} [\mu {\sf m}]$	72	44
IP beam size	$\sigma_{\sf x}/\sigma_{\sf y} \;[{\sf nm}]$	200/2.26	40/1
norm. emittance	$\epsilon_{\rm x}/\epsilon_{\rm y}$ [nm]	2400/25	660/20
bunches per pulse	n _b	354	312
distance between bunches	Δ_{b} [ns]	0.5	0.5
repetition rate	f _r [Hz]	50	50
est. power cons.	P _{wall} [MW]	271	582

CLIC project time-line

<u>21 12</u>

2012-16 Development Phase

Develop a Project Plan for a staged implementation in agreement with LHC findings; further technical developments with industry, performance studies for accelerator parts and systems, as well as for detectors.


2016-17 Decisions

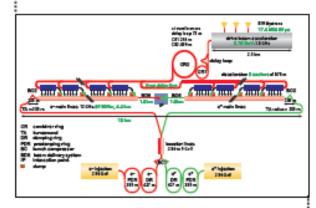
On the basis of LHC data and Project Plans (for CLIC and other potential projects), take decisions about next project(s) at 2013/8/2 C දිනිළු ළහළ අපුරු Frontier.

2017-22 Preparation Phase

Finalise implementation parameters, Drive Beam Facility and other system verifications, site authorisation and preparation for industrial procurement.

Prepare detailed Technical Proposals for the detector-systems.

2022-23 Construction Start


Ready for full construction and main tunnel excavation.

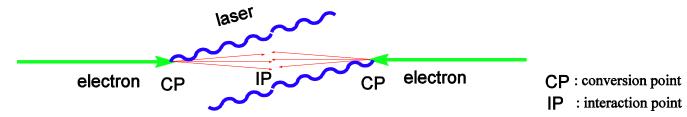
LCWS12, Arlington,

2023-2030 Construction Phase

Stage 1 construction of a 500 GeV CLIC, in parallel with detector construction.

Preparation for implementation of further stages.

2030 Commissioning


From 2030, becoming ready for data-taking as the LHC programme reaches completion.

CLIC Technology Maturity

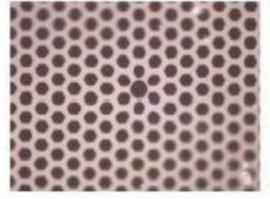
- CDR published
- Cavity with accelerating gradient ~100MV/m almost confirmed
- Drive Beam generation demonstrated. Emittance and stability to be further improved
- Deceleration in PETS in progress
- Emittance preservation in linac with stabilization system developed
- Linac beam dynamics being tested at FACET
- Final Focus System to be tested at ATF2

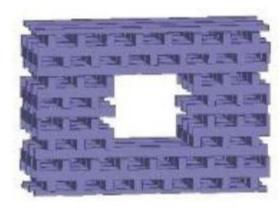
Gamma-Gamma Collider

- electron-electron collider
- irradiate lasers just before ee collision
- create high energy photons, which made to collide
- no need of positrons

- Lots of recent proposals of $\gamma \gamma \rightarrow H$ (not "beyond LHC")
- ILC and CLIC can be converted to γ - γ collider if physics demands
- In principle, advanced linear colliders (plasma, etc) can also be converted to γ-γ collider. In particular when positron acceleration is difficult.

Technology for Gamma-Gamma


- Laser
 - Pulse structure must match with the electron beam (difference between NC and SC linacs)
 - Flash energy : a few to 10 Joules
 - Some lasers close to gamma-gamma application
 - LIFE (fusion), fiber
 - But still needs years of R&D including the adaptation of pulse structure
- Optical cavity
 - Can accumulate laser pulse from relatively weak lasers (mostly for SC linac case)
 - Many R&D studies in the world for other applications
- IR design
 - Path of laser beam
 - In particular complex with optical cavity is used
 - background studies


Advanced Acceleration Mechanisms

- Dielectric material
 - Laser-driven (DLA)
 - Beam driven
- Plasma wakefield acceleration
 - Laser-driven (LWFA)
 - Beam driven (PWFA)

Dielectric Laser Accelerator (DLA)

- Direct extension of present accelerator concept (microwave + resonant structure)
 - Klystron \rightarrow laser
 - Resonant cavity → micron scale dielectric crystal (semiconductor technology)
 - less power loss than metal at optical frequencies
 - expected higher breakdown thresholds (> 1 order of magnitude than Cu structure)
- Very short wavelength (micron)
- Require very low bunch charge O(10⁴) plus very high repetition rate O(GHz)
 - In one hand this relaxes the beam-beam interaction

DLA

- Challenges
 - material to ensure the gradient
 - power coupler of high efficiency
 - electron beam with required bunch pattern (hundred bunchlets in picosecond repeated a few MHz)
 - for colliders
 - emittance growth by transverse wake (alignment)
 - positron beam almost impossible to create the beam structure?
 - Can go to γ-γ collider? But require extreme laser (~5TW x 1ps, average ~50MW)

An example of 10TeV
collider

3.80E+04
159
5 MHz
150 μm
1.89 μm
1e-10 m
0.06nm
4.90E+36
24.2MW
242MW
400MV/m
25km
1μJ
1kW
1ps
30-40%

one of the examples in ICFA-ICUIL report

Plasma Wakefield Accelerator

Linac in the past has been driven by microwave technology

- Plane wave in vacuum cannot accelerate beams: needs material to make boundary condition
- Breakdown at high gradient

Excite **plasma wave** by some way (electron beam, laser beam)

- Charged particles on the density slope are accelerated, like surfing.
- Need not worry about breakdown with plasma
 - can reach > 10GeV/m
- Plasma oscillation frequency and wavelength are related to plasma density

$$\omega_p = \sqrt{\frac{e^2}{\epsilon_0 m_e}} n_0, \qquad \lambda_p = \frac{2\pi c}{\omega_p} = \frac{3.3 \times 10^4}{\sqrt{n_e [\text{cm}^{-3}]}} \quad \text{[m]}$$
$$n_e = \text{plasma density}$$

How to Generate Plasma Wave

• Beam-Driven (PWFA)

- Use particle (normally electron) beam of short bunch

• Laser-Driven (LWFA)

Use ultra-short laser beam

- In both cases the driving beam
 - determines the phase velocity of plasma wave, which must be close to the velocity of light
 - must be shorter than the plasma wavelength required
 - can also ionize neutral gas to create plasma

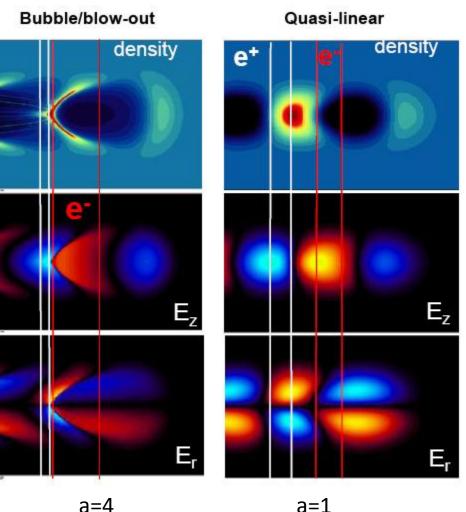
LWFA

- kick out plasma electrons by pondermotive force of laser
- Laser intensity characterized by the parameter a₀
 - $-a_0 < 1$: linear regime
 - a₀ > 1 : blow-out regime (all electrons expelled out of the drive beam region)

 $a_0 \approx 8.5 \times 10^{-10} \lambda_L [\mu \text{m}] I^{1/2} [\text{W/cm}^2]$

• Accelerating field

$$E = E_0 \frac{a_0^2/2}{\sqrt{1 + a_0^2/2}}$$
$$E_0 = cm_e \omega_p / e = 96 n_0^{1/2} [\text{cm}^{-3}]$$


Blowout and Linear Regime

- The gradient can be higher in the blowout regime but acceleration
 - difficult to accelerate positron
 - narrow region plasma of acceleration density and focusing

transve rse field

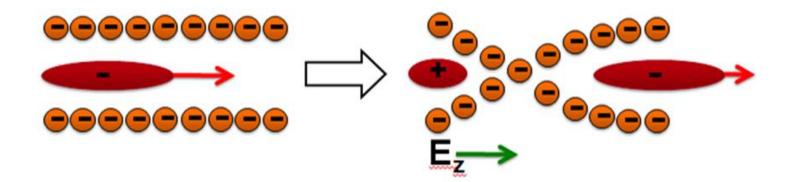
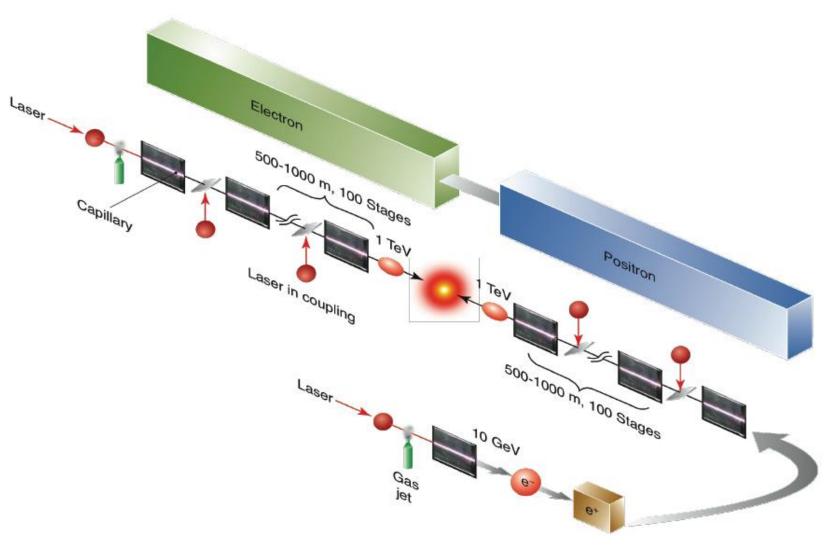

field

Figure from ICFA Beamdynamics News Letter 56

Positron Acceleration


- Positron beam is defocused in the acceleration phase
- Use hollow plasma channel
- Acceleration+focusing phase created when plasma electrons go back to the axis

Limitation by Single Stage

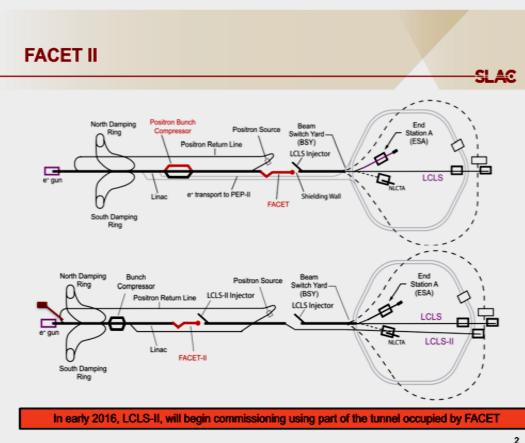
- Laser must be kept focused (Rayleigh length)
 - solved by self-focusing and/or preformed plasma channel
- Dephasing: laser velocity in plasma
 - longitudinal plasma density control
- Eventually limited by depletion
 - depletion length proportional to $n_0^{-3/2}$
 - acceleration by one stage proportional to I/n_0
- Multiple stages needed for high energy, introducing issues of
 - phase control
 - electron orbit matching

Concept of LWFA Collider

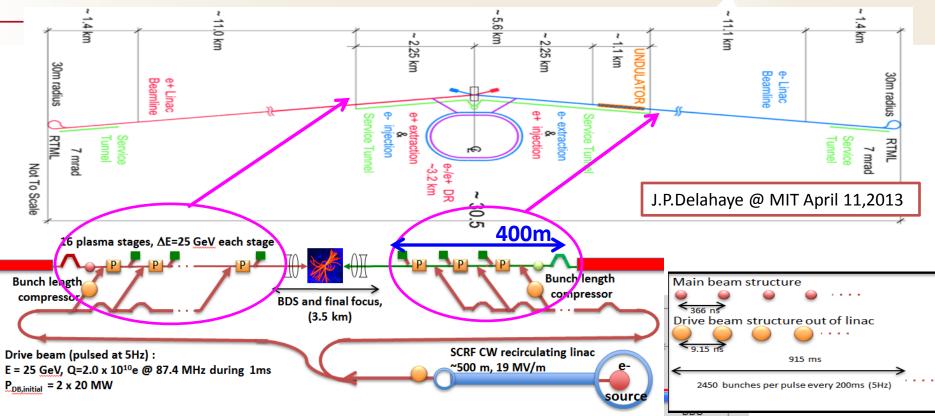
Example Beam Parameters of 1-10TeV LWFA

Case: CoM Energy (Plasma density)	1 TeV (10 ¹⁷ cm ⁻³)	1 TeV (2×10 ¹⁵ cm ⁻³)	10 TeV (10 ¹⁷ cm ⁻³)	10 TeV (2×10 ¹⁵ cm ⁻³)
Energy per beam (TeV)	0.5	0.5	5	5
Luminosity (10 ³⁴ cm ⁻² s ⁻¹)	2	2	200	200
Electrons per bunch (×10 ¹⁰)	0.4	2.8	0.4	2.8
Bunch repetition rate (kHz)	15	0.3	15	0.3
Horizontal emittance $\gamma \varepsilon_x$ (nm-rad)	100	100	50	50
Vertical emittance $\gamma \epsilon_y$ (nm-rad)	100	100	50	50
β* (mm)	1	1	0.2	0.2
Horizontal beam size at IP σ_x^* (nm)	10	10	1	1
Vertical beam size at IP σ_y^* (nm)	10	10	1	1
Disruption parameter	0.12	5.6	1.2	56
Bunch length σ_z (µm)	1	7	1	7
Beamstrahlung parameter Υ	180	180	18,000	18,000
Beamstrahlung photons per e, n_{γ}	1.4	10	3.2	22
Beamstrahlung energy loss δ_E (%)	42	100	95	100
Accelerating gradient (GV/m)	10	1.4	10	1.4
Average beam power (MW)	5	0.7	50	7
Wall plug to beam efficiency (%)	6	6	10	10
One linac length (km)	0.1	0.5	1.0	5

From ICFA Beamdynamics News Letter 56 (ICFA-ICUIL White paper)


Example Laser Parameters of 1/10TeV LWFA

Case: CoM Energy	1 TeV	1 TeV	10 TeV	10 TeV
(Plasma density)	$(10^{17} \mathrm{cm}^{-3})$	$(2 \times 10^{15} \text{ cm}^{-3})$	$(10^{17} \mathrm{cm}^{-3})$	$(2 \times 10^{15} \text{ cm}^{-3})$
Wavelength (µm)	1	1	1	1
Pulse energy/stage (kJ)	0.032	11	0.032	11
Pulse length (ps)	0.056	0.4	0.056	0.4
Repetition rate (kHz)	15	0.3	15	0.3
Peak power (PW)	0.24		0.24	12
Average laser power/stage (MW)	0.48	3.4	0.48	3.4
Energy gain/stage (GeV)	10	500	10	500
Stage length [LPA + in-coupling] (m)	2	500	2	500
Number of stages (one linac)	50	1	500	10
Total laser power (MW)	48	3.4	480	34
Total wall power (MW)	160	23	960	138
Laser to beam efficiency (%) [laser to wake 50% + wake to beam 40%]	20	20	20	20
Wall plug to laser efficiency (%)	30	30	50	50
Laser spot rms radius (µm)	69	490	69	490
Laser intensity (W/cm ²)	3×10^{18}	3×10^{18}	3×10^{18}	3×10^{18}
Laser strength parameter a_0	1.5	1.5	1.5	1.5
Plasma density (cm ⁻³), with tapering	10 ¹⁷	2×10^{15}	10 ¹⁷	2 x 10 ¹⁵
Plasma wavelength (mm)	0.1	0.75	0.1	0.75


From ICFA Beamdynamics News Letter 56

Beam-Driven Plasma Accelerator

- Use electron beam to generate plasma wave
- Bunch pattern is more flexible than in LWFA (not constrained by the laser technology)
- R&D works led by SLAC (FACET/FACET2)

An alternative ILC upgrade by PWFA

One possible scenario could be:

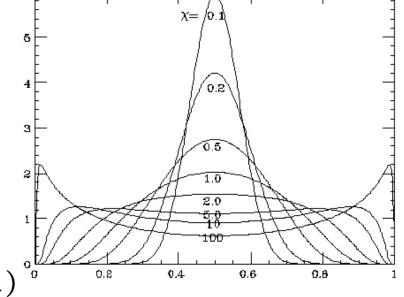
- 1) Build & operate the ILC as presently proposed up to 250 GeV (125 GeV/beam): total extension 21km
- 2) Develop the PFWA technology in the meantime (up to 2025?)
- 3) When ILC upgrade requested by Physics (say up to 1 TeV), decide for ILC or PWFA technology:
- 4) Do not extend the ILC tunnel but remove latest 400m of ILC linac (beam energy reduced by 8 GeV)
- 5) Reuse removed ILC structures for PWFA SC drive beam accelerating linac (25 GeV, 500m@19MV/m)
- 6) Install a bunch length compressor and 16 plasma cells in latest part of each linac in the same tunnel for a 375+8 GeV PWFA beam acceleration (382m)
- 7) Reuse the return loop of the ILC main beam as return loop of the PWFA drive beam

ILC upgrade from 250 GeV to 1 TeV by PWFA

Parameter	Unit	ILC	ILC	ILC (to 250GeV) + PWFA
Energy (cm)	GeV	250	1000	PFWA = 250 to 1000
Luminosity (per IP)	10 ³⁴ cm ⁻² s ⁻¹	0.75	4.9	4.9
Peak (1%)Lum(/IP)	10 ³⁴ cm ⁻² s ⁻¹	0.65	2.2	2.2
# IP	-	1	1	1
Length	km	21	52	21
Power (wall plug)	MW	128	300	128+135*1.2=290?
Polarisation (e+/e-)	%	80/30	80/30	80/30
Lin. Acc. grad. (peak/eff)	MV/m	31.5/25	36/30	7600/1000
# particles/bunch	10 ¹⁰	2	1.74	1.74
# bunches/pulse	-	1312	2450	2450
Bunch interval	ns	554	366	366
Average/peak current	nA/mA	21/6	22.9/7.6	22.9/7.6
Pulse repetition rate	Hz	5	4	5
Beam power/beam	MW	2.63	13.8	13.8
Norm Emitt (X/Y)	10 ⁻⁶ /10 ⁻⁹ rad-m	10/35	10/30	10/30
Sx, Sy, Sz at IP	nm,nm,µm	729/6.7/300	335/2.7/225	485/2.7/ <mark>20</mark>
Crossing angle	mrad	14	14	14
Av # photons	-	1.17	2.0	1.0
δ b beam-beam	%	0.95	10.5	16
Upsilon	-	0.02	0.09	0.8
2013/8/2 CSS2013 Yokoya		J.P.Delahaye	@ MIT April 11	2 2 2 2

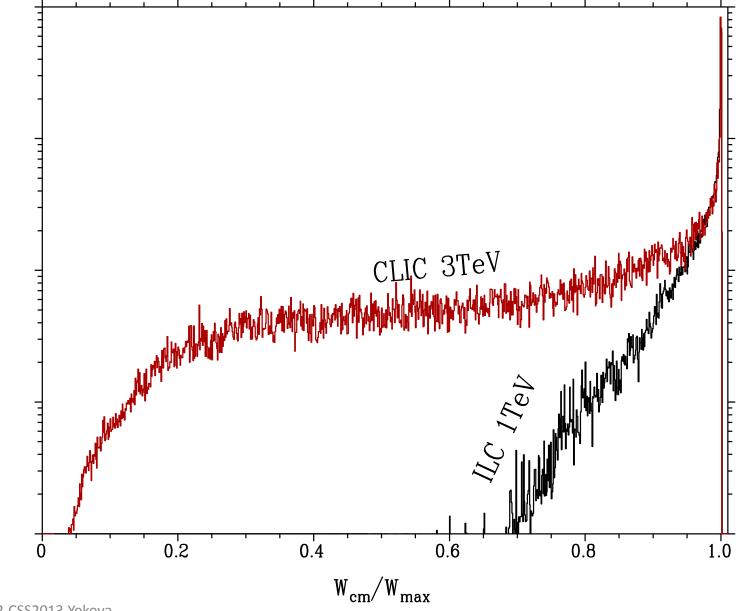
What's Needed for Plasma Collider

- High rep rate, high power laser (Laser-driven)
- Beam quality
 - Small energy spread << 1%
 - emittance preservation (alignment, instabilities, laser stability, Coulomb scattering)
- High power efficiency from wall-plug to beam
 - − Wall-plug \rightarrow laser (Laser-driven)
 - − Laser (beam) \rightarrow plasma wave
 - plasma wave \rightarrow beam (high-beam loading required)
- Staging (BELLA at LBNL--- 2 stage acceleration to 10GeV)
 - laser phase (Laser-driven)
 - beam optics matching
- Positron acceleration
- Beam-beam interaction
- Very high component reliability
- Low cost per GeV
- Colliders need all these, but other applications need only some of these
 - Advantage of LWFA (PWFA requires big drive linac)
- Application of plasma accelerators would start long before these requirements are established


A Challenge for Detectors

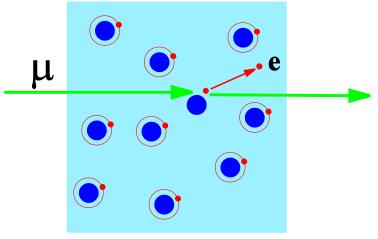
- Wakefield accelerators adopt short wavelength
 - The bunch length inevitably short
 - High beamstrahlung parameter

$$\Upsilon \equiv \frac{\text{critical energy}}{E_0} \propto \frac{N\gamma}{\sigma_z(\sigma_x + \sigma_y)}$$

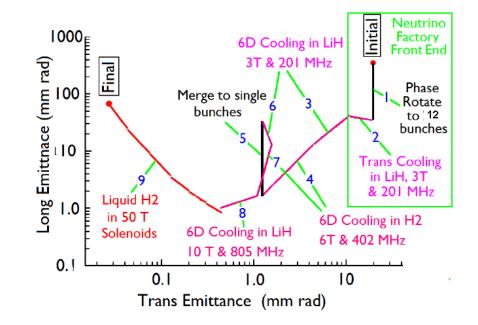

- High field effects
 - Beamstrahlung $e \rightarrow e + \gamma$
 - Coherent pair creation $\gamma \rightarrow e^+ e^-$
 - Minimum electron energy

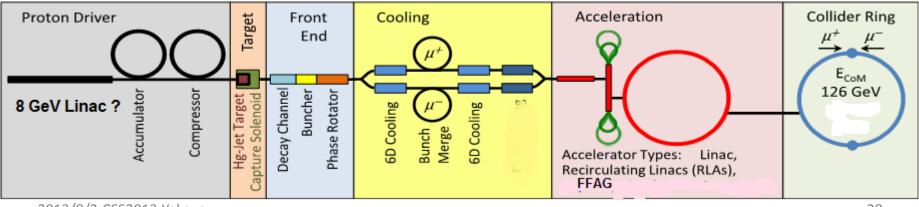
 $E_{min} \sim E_0 / \Upsilon, \qquad (\Upsilon \ll 1)$

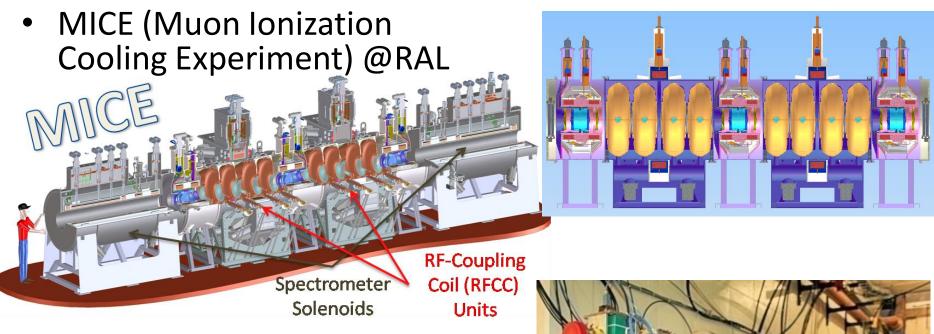
- Come out with very large angles
- Previous LWFA example gives Y=18000, $E_{min} \sim 300$ MeV, angle = O(1radian)
- Much more abundant than the pairs from particle-particle collision


Luminosity Spectrum (e⁻,e⁺)

dL/dW (arbitrary scale)


Muon Collider


- Properties of muons are quite similar to electron/positron
 - What can be done in e+e- can also be done in $\,\mu^{\scriptscriptstyle +}\mu^{\scriptscriptstyle -}$
- but muon is 200x heavier → can be accelerated to high energies in circular accelerator
- μ⁺μ⁻ collider is much cleaner than e+e- (beamstrahlung negligible)
 except the problem of background from muon decay
- But muons do not exist naturally
 - need cooling like antiproton
- "Ionization cooling" invented by Skrinsky-Parkhomchuk 1981, Neuffer 1983
 - Make use of energy loss dE/dx by ionization
 - Coulomb scattering heats the beam


Create and Cool Muon Beam

- Muons created by hadron collision
- Muons decay within 2µs in the rest frame
 - must be accelerated quickly
- Staging
 - Higgs factory at E_{cm}=126GeV (Z-pole used to be the first target)
 - Neutrino factory
 - TeV muon collider

Cooling Test Facilities

- MTA (MuCool Test Area) @FNAL
 - cavity test

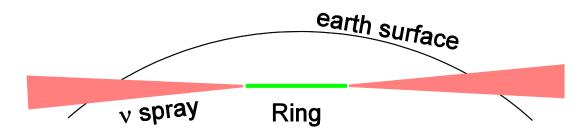
Norin To	ating		
P Tarte Cooling			Рс
μ ^μ μ ^μ Ferr	milab S	site	Со
			Avg.
Range of Top Para	m	s:	eam l
δE/E ~ 0.01 - 0.1	%		Hig
$L_{avg} \sim 0.7 - 6 \cdot 10$			Circ
Lavg off of Lo			N
			Rep
Exquisite Energy			
Resolution			No. m
Allows Direct			No. bı
Measurement		Nor	m. Tra

Site Radiation mitigation with depth and lattice design: ≤ 10 TeV

of Higgs Width

MAP Designs for a Muon-Based Higgs Factory and Energy Frontier Colliders

20

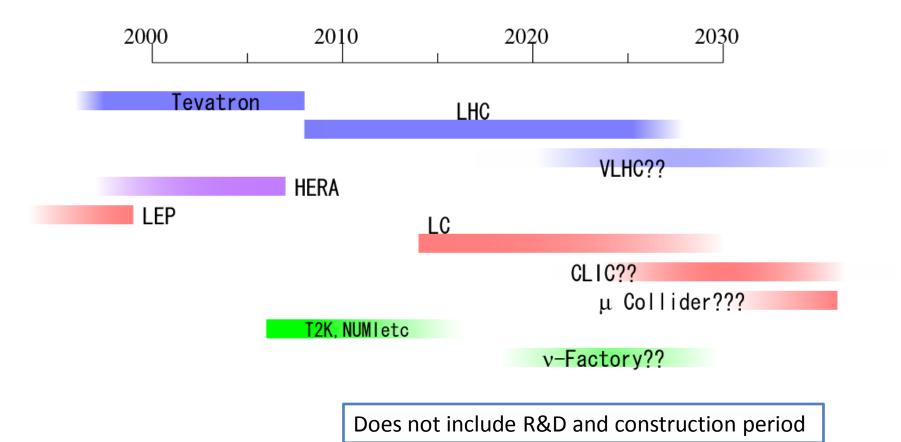

*		Muon Collider Baseline Parameters									
			Multi-TeV Baselines								
ng r			Startup	Production							
lab S		Parameter	Units	Operation	Operation	L					
ab e		CoM Energy	TeV	0.126	0.126		1.5	3.0			
		Avg. Luminosity	10 ³⁴ cm ⁻² s ⁻¹	0.0017	0.008		1.25	4.4			
n	s:	eam Energy Spread	%	0.003	0.004	\geq	0.1	0.1			
%		Higgs/10 ⁷ sec		3,500	13,500	:	37,500	200,000			
3		Circumference	km	0.3	0.3		2.5	4.5			
		No. of IPs		1	1	\Box	2	2			
	Repetition Pate		Hz	30	15	\Box	15	12			
			cm	3.3	1.7	1 (0).5-2)	0.5 (0.3-3)			
		No. muons/bunch	10 ¹²	2	4		2	2			
1		No. bunches/beam		1	1	\Box	1	1			
	No	orm. Trans. Emittance, e_{TN}	p mm-rad	0.4	0.2		0.025	0.025			
	No	rm. Long. Emittance, e _{LN}	p mm-rad	1	1.5		70	70			
	Bunch Length, S _s Beam Size @ IP Beam-beam Parameter / IP		cm	5.6	6.3		1	0.5			
Ī			mm	150	75		6	3			
				0.005	0.02		0.09	0.09			
		Proton Driver Power	MW	4 [#]	4		4	4			
-	# Co	ould begin operation with I	Project X Sta	age 2 beam				d cooling			
			concer	ots 🛱	> severa	al ∠ 10 ³²					

2013/8/2 CSS2013 Yokoya

M.Palmer, Jul.30

Technical Challenges on Muon Collider

- Proton driver of several MW
- Target at several MW
- Ionization cooling
 - ~10⁷ in 6D emittance
 - High field HTS solenoid (>30T)
 - High gradient acceleration in magnetic field (Teslas)
- collider ring issues
 - High field dipole (10-20T)
 - muon decay (background, magnet shielding)
- Will require tens of years of R&D
- Energy limit comes from radiation (~10TeV?)



Summary

- Microwave acceleration up to 3TeV (ILC + CLIC)
 - Accelerator technology nearly ready
- Gamma-gamma collider
 - Laser technology not too far
 - Need detailed design including IR
- Muon collider
 - − Staging possible (Higgs \rightarrow nu factoryb \rightarrow TeV collider)
 - several beyond-state-of-art components needed
 - but already in the region of accelerator physics
- Plasma collider
 - Still long, long way to colliders
 - Still in the level of plasma physics. Not yet at the stage of accelerator physics
 - PWFA seems to be better for colliders
 - LWFA can have lower-energy application, so step-by-step experience can be gained
- US is in leading position in most of the collider R&D

Time Line???

• An example of poor prediction : Don't make prediction!

Aug.2004 ICHEP at Beijing