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Tough Question 4:
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Exotic acceleration mechanisms for electrons have been
demonstrated to give accelerations of GeV/m and even tens of
GeV/m. But these devices operate with low efficiency both in
power use and in throughput of particles. Is there a path to an
accelerator based on these technologies that will deliver high
luminosity and TeV energies?



Accelerators and Particle Physics
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Largest Cost Driver for a Linear Collider is the Acceleration

* [LC geometric gradient is ~20 MV/m —> 50km for 1 TeV
 Looking to advanced concepts to shrink the size and cost of these
accelerators by factors of 10-1000

- High gradient acceleration requires high peak power and structures that
can sustain high fields

- Combine efficient accelerator drivers with high-field dielectric and plasma
structures to develop new generation of particle accelerators

~10GeV/m

~100MeV/m ~1GeV/m
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Telecom and Semiconductor tools Extremely high fields in 1,000°C
New designs and materials used to make an ‘accelerator on a lithium plasmas have doubled the
push metal structures to the chip’ energy of the 3km SLAC linac in

limit just 1 meter




Why Plasmas?
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Relativistic plasma wave (electrostatic):
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» Plasmas are already ionized, no break down

* Plasma wave can be driven by:

- Intense laser pulse (LWFA)
- Short particle bunch (PWFA)
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Electron Acceleration in Plasmas
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Is there a path to an accelerator based on these technologies
that will deliver high luminosity and TeV energies?
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A conc?ptual PWFA-LC' ~4.5 km
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New concept for a PWFA-LC
CW option with recirculation
E.. = 1TeV, L1 6x10%, Tel.0
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e- source +
6 e+ source

lasma stages, AE=25 GeV each stage

; BDS and final focus

(3.5 km)

FACET

Magneticchicanes:4ns delay >

” Injection every halfturn Main e+ plasma acceleration (0.5 km)
C=1000 M, Pjoss/Pos =8%

=

Main e-plasma acceleration (0.5 km)

Drive beam after accumulation: ’ \ 4passes Recirculating SCRF CW linacs
Trains of 20 bunches, 4 nsapart @ 15 kHz mulator Each linac:3.16GV, 19 MV/m, 250m
ring Eacharc:437.5m

S -~
— Drive beam?gW) :
< 25m > E=25GeV,
MB bunch Matching 38 Q=2.0 x 10%% @ 15x40 kHz
@ 15kHz ump Pontai = 2X 28 MW
e A Main beam structure o source
Plasma cell - —~ v @
@ injection My Drive beam structure out of linac E _ 1 T V
| 19 9 9 @ em = 1 1€
DB 20-bunch train ’ L - 1034 Cm23-1
@ 15 kHz §~10mrad, Drive beam structure out of acc.ring ..
2 B v v w vew -
prTrd 7w
— SLAC-PUB-15426 7




Primary Challenges for a PWFA-LC

The concept for the PWFA-LC highlights the key beam and plasma physics challenges
must be addressed by experimental facilities such as FACET. A reasonable set of design
choices for a plasma-based linear collider can benefit from the years of extensive R&D
performed for the beam generation and focusing subsystems of a conventional rf linear
collider. The remaining experimental R&D is directly related to the beam acceleration
mechanism. In particular, the primary issues are:

Development of a concept for positron acceleration with high beam brightness

High beam loading with both electrons and positrons (required for high efficiency),
Beam acceleration with small energy spreads (required to achieve luminosity and
luminosity spectrum),

Preservation of small electron beam emittances (required to achieve luminosity) and
mitigation of effects resulting from ion motion

Preservation of small positron beam emittances (required to achieve luminosity) and
mitigation of effects resulting from plasma electron collapse

Average bunch repetition rates in the 10’s of kHz (required to achieve luminosity)
Synchronization of multiple plasma stages to achieve the desired energy, and

Optical beam matching between plasma acceleration stages and from plasma to beam
delivery systems.

Answering these questions requires dedicated test facilities like
FACET & FACET-II




Primary Challenges for a PWFA-LC

Positrons, beam quality,
efficiency, and staging

Answering these questions requires dedicated test facilities like
FACET & FACET-II




Positron Focussing and Acceleration

100
&0
i)
40

100

E

- »

- fra
> 0 =
El 40
@ -20 =

Phys. Rev. Lett. 90, 205002 (2003) Phys. Rev. Lett. 101, 055001 (2008)

» High-gradient positron acceleration is possible R ———
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Key steps towards a collider are development of a module and

demonstrating multi-module acceleration

Concept of compact TeV collider

Acceleration of e /e*to 1TeV in 100s meters
100 x 10 GeV stages (n,~107cm3).

Challenges are similar to beam driven

BELLA, BELLA-II

Leemans & Esarey Phys. Today 2009 Positron production target




Beam Driven Dielectrics: Argonne Flexible Linear Collider

R&D Challenges: Structure material & geometry, beam quality, efficiency, staging

Proceedings of IPAC2013, Shanghai, China TUPEAO08S
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Figure 2: The conceptual layout of the Argonne Flexible Collider.
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DLA Collider Concept
(low charge, small apertures, small emittance, high rep rate)
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Primary R&D Challenges: < ,‘4-\
1. IR laser damage limits of semiconductor materials at picosecond pulse lengths
2. High (near 100%) efficiency power coupling schemes
3. Integrated designs with multiple stages of acceleration
4. Phase stability issues related to temperature and nonlinear high-field effects in dielectrics



Tough Question 4:
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Exotic acceleration mechanisms for electrons have been demonstrated to give accelerations of
GeV/m and even tens of GeV/m. But these devices operate with low efficiency both in power
use and in throughput of patrticles. Is there a path to an accelerator based on these
technologies that will deliver high luminosity and TeV energies?

The short answer is YES!

...but...

 Covering the path will take 1-2 decades of R&D at dedicated test facilities at
National Labs

* First applications of these technologies will likely be making x-rays (betatron,
XFEL)

e If a near term decision is made to move forward with an ILC, should consider
how to apply these techniques as an energy upgrade down the road
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Plasma Accelerators Showing Great Promise
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Laser Driven Plasma Accelerators:
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LWFA: T. Tajima and J. M. Dawson
Phys. Rev. Lett. 43, 267 - 270 (1979)

PWFA: P. Chen et al

Phys. Rev. Lett. 54, 693 - 696 (1985) 14




Plasma Accelerators Showing Great Promise
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Success Has Brought New DOE Facilities
Dedicated to Studying LWFA & PWFA
BELLA (LBNL) & FACET (SLAC)

LWFA: T. Tajima and J. M. Dawson PWFA: P. Chen et al
Phys. Rev. Lett. 43, 267 - 270 (1979) Phys. Rev. Lett. 54, 693 - 696 (1985) 14



