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Table 9. Results for the fNL parameters of the primordial local, equilateral, and orthogonal shapes, determined by the KSW, binned
and modal estimators from the SMICA, NILC, SEVEM, and C-R foreground-cleaned maps. Both independent single-shape results and
results marginalized over the point source bispectrum and with the ISW-lensing bias subtracted are reported; error bars are 68%
CL .

Independent ISW-lensing subtracted

KSW Binned Modal KSW Binned Modal

SMICA

Local . . . . . . . . . . . . . . . . 9.8 ± 5.8 9.2 ± 5.9 8.3 ± 5.9 . . . . . 2.7 ± 5.8 2.2 ± 5.9 1.6 ± 6.0
Equilateral . . . . . . . . . . . . �37 ± 75 �20 ± 73 �20 ± 77 . . . . . �42 ± 75 �25 ± 73 �20 ± 77
Orthogonal . . . . . . . . . . . . �46 ± 39 �39 ± 41 �36 ± 41 . . . . . �25 ± 39 �17 ± 41 �14 ± 42

NILC

Local . . . . . . . . . . . . . . . . 11.6 ± 5.8 10.5 ± 5.8 9.4 ± 5.9 . . . . . 4.5 ± 5.8 3.6 ± 5.8 2.7 ± 6.0
Equilateral . . . . . . . . . . . . �41 ± 76 �31 ± 73 �20 ± 76 . . . . . �48 ± 76 �38 ± 73 �20 ± 78
Orthogonal . . . . . . . . . . . . �74 ± 40 �62 ± 41 �60 ± 40 . . . . . �53 ± 40 �41 ± 41 �37 ± 43

SEVEM

Local . . . . . . . . . . . . . . . . 10.5 ± 5.9 10.1 ± 6.2 9.4 ± 6.0 . . . . . 3.4 ± 5.9 3.2 ± 6.2 2.6 ± 6.0
Equilateral . . . . . . . . . . . . �32 ± 76 �21 ± 73 �13 ± 77 . . . . . �36 ± 76 �25 ± 73 �13 ± 78
Orthogonal . . . . . . . . . . . . �34 ± 40 �30 ± 42 �24 ± 42 . . . . . �14 ± 40 �9 ± 42 �2 ± 42

C-R

Local . . . . . . . . . . . . . . . . 12.4 ± 6.0 11.3 ± 5.9 10.9 ± 5.9 . . . . . 6.4 ± 6.0 5.5 ± 5.9 5.1 ± 5.9
Equilateral . . . . . . . . . . . . �60 ± 79 �52 ± 74 �33 ± 78 . . . . . �62 ± 79 �55 ± 74 �32 ± 78
Orthogonal . . . . . . . . . . . . �76 ± 42 �60 ± 42 �63 ± 42 . . . . . �57 ± 42 �41 ± 42 �42 ± 42

squeezed configurations, its impact is well known to be largest
for the local shape. The ISW-lensing bias is also important for
orthogonal measurements (there is a correlation coe�cient r ⇠
�0.5 between the local and orthogonal CMB templates), while
it is very small in the equilateral limit. The values of the ISW-
lensing bias we subtract, summarized in Table 1, are calculated
assuming the Planck best-fit cosmological model as our fidu-
cial model. The same fiducial parameters were of course consis-
tently used to compute the theoretical bispectrum templates and
the estimator normalization. Regarding the point source contam-
ination, we detect a Poissonian bispectrum at high significance
in the SMICA map, see Sect. 5.3. However, marginalizing over
point sources still carries a nearly negligible impact on the final
primordial fNL results, because the Poisson bispectrum template
has very small correlations with all the other shapes.

In light of the discussion at the beginning of this section, we
take the numbers from the KSW SMICA analysis in Table 8 as the

Table 10. Results for the fNL parameters of the primordial local,
equilateral, and orthogonal shapes, determined by the subopti-
mal wavelet estimator from the SMICA foreground-cleaned map.
Both independent single-shape results and results marginalized
over the point source bispectrum and with the ISW-lensing bias
subtracted are reported; error bars are 68% CL. As explained in
the text, our current wavelets pipeline performs slightly worse in
terms of error bars and correlation to primordial templates than
the other bispectrum estimators, but it still provides a useful in-
dependent cross-check of other techniques.

Independent ISW-lensing subtracted

Wavelets Wavelets

SMICA

Local . . . . . . . . . 10 ± 8.5 0.9 ± 8.5
Equilateral . . . . . 89 ± 84 90 ± 84
Orthogonal . . . . . �73 ± 52 �45 ± 52

final local, equilateral and orthogonal fNL constraints for the cur-
rent Planck data release. These results clearly show that no evi-
dence of NG of the local, equilateral or orthogonal type is found
in the data. After ISW-lensing subtraction, all fNL for the three
primordial shapes are consistent with 0 at 68% CL. Note that
these numbers have been cross-checked using two completely
independent KSW pipelines, one of which is an extension to
Planck resolution of the pipeline used for the WMAP analysis
(Bennett et al. 2012).

Unlike other methods, the KSW technique is not designed
to provide a reconstruction of the full bispectrum of the data.
However, the related skew-C` statistic described in Sect. 3.2.2
allows, for each given shape, visualization and study of the con-
tribution to the measured fNL from separate `-bins. This is a
useful tool to study potential spurious NG contamination in the
data. We show for the SMICA map in Fig. 5 the measured skew-
C` spectrum for optimal detection of primordial local, equilat-
eral and orthogonal NG, along with the best-fitting estimates of
fNL from the KSW method for di↵erent values of `. Contrary to
the case of the point source and ISW-lensing foregrounds (see
Sect. 5), the skew-C` statistics do not show convincing evidence
for detection of the primordial shapes. In particular the skew-
spectrum related to primordial local NG does not have the right
shape, suggesting that whatever is causing this NG signal is not
predominantly local. Again, point sources contribute very little
to this statistic; ISW-lensing contributes, but only a small frac-
tion of the amplitude, so there are indications of additional NG
not captured by these foregrounds. In any event the estimators
are consistent with no primordial signal of the types considered.

As mentioned before, our analysis went beyond the simple
application of the KSW estimator to the SMICA map. All fNL
pipelines developed for Planck analysis were actually applied
to all component-separated maps by SMICA, NILC, SEVEM, and
C-R. We found from simulations in the previous Sections that
the KSW, binned, and modal pipelines saturate the Cramér-Rao
bound, while the wavelet estimator in its current implementation
provides slightly suboptimal results. Wavelets remain however a
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Fig. 6. Full 3D CMB bispectrum recovered from the Planck foreground-cleaned maps, including SMICA (left), NILC (centre) and
SEVEM (right), using the hybrid Fourier mode coe�cients illustrated in Fig. 8, These are plotted in three-dimensions with multipole
coordinates {`1, `2, `3} on the tetrahedral domain shown in Fig. 1 out to `max = 2000. Several density contours are plotted with red
positive and blue negative. The bispectra extracted from the di↵erent foreground-separated maps appear to be almost indistinguish-
able.

Fig. 7. Planck CMB bispectrum detail in the signal-dominated regime showing a comparison between full 3D reconstruction using
hybrid Fourier modes (left) and hybrid polynomials (right). Note the consistency of the main bispectrum properties which include
an apparently ‘oscillatory’ central feature for low-` together with a flattened signal beyond to ` . 1400. Note also the periodic CMB
ISW-lensing signal in the squeezed limit along the edges of the tetrapyd.

These amplitudes show remarkable consistency between the dif-
ferent maps, demonstrating that the alternative foreground sepa-
ration techniques do not appear to be introducing spurious NG.
Note that here the �R

n coe�cients are for the orthonormalized
modes Rn (Eq. (63)) and they have a roughly constant variance,
so anomalously large modes can be easily identified. It is ev-
ident, for example, that among the low modes there are large
signals, which include the ISW-lensing signal and point source
contributions.

Using the modal expansion of Eq. (45) with Eq. (63), we
have reconstructed the full 3D Planck bispectrum. This is illus-
trated in Fig. 6, where we show “tetrapyd” comparisons between
di↵erent foreground cleaned maps. The tetrapyd (see Fig. 1) is
the region defined by the multipoles that obey the triangle condi-
tion, with `  `max. The 3D plots show the reduced bispectrum of
the map, divided by a Sachs-Wolfe CMB bispectrum solution for

a constant primordial shape, S (k1, k2, k3) = 1. This constant pri-
mordial bispectrum template normalizaton is carried out in order
to remove an ⇠ `4 scaling from the starting bispectrum (it is anal-
ogous to multiplication of the power spectrum by `(` + 1)). To
facilitate the interpretation of 3D bispectrum figures, note that
squeezed configurations lie on the edges of the tetrapyd, flat-
tened on the faces and equilateral in the interior, with b``` on the
diagonal. The colour levels are equally spaced with red denot-
ing positive values, and blue denoting negative. Given the cor-
respondence of the �R

n coe�cients for SMICA, NILC, and SEVEM,
the reconstructed 3D signals also appear remarkably consistent,
showing similar contours out to ` . 1500. At large multipoles `
approaching `max = 2000, there is increased randomness in the
reconstruction due to the rise in experimental noise and some
evidence for a residual point source contribution.
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B(k1, k2, k3) =
X

p,r,s

↵prs qp(k1)qr(k2)qs(k3)
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Fig. 8. Modal bispectrum coe�cients �R
n for the mode expansion

(Eq. (63)) obtained from Planck foreground-cleaned maps using
hybrid Fourier modes. The di↵erent component separation meth-
ods, SMICA, NILC and SEVEM exhibit remarkable agreement. The
variance from 200 simulated noise maps was nearly constant for
each of the 300 modes, with the average ±1� variation shown in
red.

Fig. 9. The total integrated bispectrum F2
NL defined in Eq. (64)

as a cumulative sum over orthonormal modal coe�cients �R
n

2

(upper panel) and over multipoles up to a given ` (lower panel).
Above, the relative quantity F2

NL ⌘ F̄2
NL �FG

NL
2 is plotted, where

FG
NL

2 is the mean obtained from 200 CMB Gaussian maps with
the standard deviation shown as the red line. Below the square
of the bispectrum is integrated over the tetrapyd out to ` and its
significance plotted relative to the Gaussian standard deviation
(1� red line). A hybrid polynomial basis nmax = 600 is employed
in the signal-dominated region `  1500.

There are some striking features evident in the 3D bispec-
trum reconstruction which appear in both Fourier and polyno-
mial representations, as shown in more detail in Fig. 7. There is
an apparent oscillation at low ` . 500 already seen in WMAP-7
(Fergusson et al. 2012). Beyond out to ` ⇠ 1200 there are further
distinct features (mostly “flattened” on the walls of the tetrapyd),
and an oscillating ISW-lensing contribution can be discerned in
the squeezed limit. Whatever its origin, Gaussian or otherwise,
Fig. 7 reveals the CMB bispectrum of our Universe as observed
by Planck.

The cumulative sum F2
NL over the squared orthonormal co-

e�cients �R
n

2 from Eq. (64) for the Planck data is illustrated in
Fig. 9 (upper panel). The Planck bispectrum contribution can
be directly compared with Gaussian expectations averaged from
200 lensed Gaussian maps with simulated residual foregrounds.
It is interesting to note that the integrated bispectrum signal
fairly consistently exceeds the Gaussian mean by around 2�
over much of the domain. This includes the ISW and PS con-
tributions for which subtraction only has a modest e↵ect. Also
shown (lower panel) is the corresponding cumulative F2

NL quan-
tity as a function of multipole `, for which features have visible
counterparts at comparable ` in Fig. 7. Despite the high bispec-
trum signal, this �2-test over the orthonormal mode coe�cients
�R

n is cumulatively consistent with Gaussianity.

7.2.2. Binned bispectrum reconstruction

As explained in Sect. 3.4.2, it is interesting to study the smoothed
observed bispectrum divided by its expected standard devia-
tion, since this will indicate if there is a significant deviation
from Gaussianity for certain regions of `-space. This quantity is
shown in Figs. 10 and 11 as a function of `1 and `2, for two di↵er-
ent values (or rather, bins) of `3: the intermediate value [610,654]
in Fig. 10 and the high value [1330,1374] in Fig. 11. Each figure
shows the results for the SMICA, NILC, SEVEM, and C-R cleaned
maps as well as for the raw 143 GHz channel map. The bis-
pectra were obtained with the binned bispectrum estimator and
smoothed with a Gaussian kernel as explained in Sect. 3.4.2.
Very blue or red regions indicate significant NG, regions that are
less red or blue just represent expected fluctuations of a Gaussian
distribution.

From Fig. 10 at an intermediate value of `3 we can conclude
that there is a very good agreement between SMICA, NILC, and
SEVEM for all values of `1 and `2, and with C-R up to about
`1, `2 ⇠ 1500. In fact, up to 1500 there is also a good agree-
ment with the raw 143 GHz channel. We also see no significant
non-Gaussian features in this figure (except maybe in the C-R
and raw maps at `1, `2 > 2000).

Figure 11 at a high value of `3, on the contrary, shows signif-
icant non-Gaussian features in the raw map, but much less NG in
the cleaned maps. In particular one can see the point source bis-
pectral signal at high-` approximately equilateral configurations.
There is still an excellent agreement between SMICA, NILC, and
SEVEM. The C-Rmap shows less NG than the other three cleaned
maps, which is consistent with the absence of a detection of the
Poisson point source bispectrum for C-R, see Table 3.

7.3. Constraints on specific targeted shapes

We have deployed the modal estimator to investigate a wide
range of the inflationary models described in Sect. 2. This is
the same validated estimator for which the standard fNL re-
sults have been reported in the Sect. 7, but it is augmented with
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Constraints from Planck:
modal expansion
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Large-Scale Structure
in Three Easy Steps:



Step 1:
Produce theory predictions 
(including from simulations)
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Figure 1. A comparison of the 2-D density distribution of baryons (gas, stars and black holes) at various redshifts from three 3-D cosmological simulations with
fNL = 0 (left column), fNL = 100 (middle column) and fNL = 1000 (right column), respectively. The region rendered is a spatial slice with a thickness of 10 Mpc/h
along Z direction and 50 Mpc/h across in both X and Y directions. For the gas and stars, the brightness corresponds to the density while the color corresponds to
the temperature of the gas and the metallicity of the stars. For the color, blue and purple represent the low values (i.e. cold gas and metal poor) while green and
yellow represent the high values (i.e. hot gas and metal rich). The black holes are represented in black dots with the size proportional to the black hole mass.

fNL=0 fNL=100 fNL=1000

Zhao, Li, 
Shandera & Jeong, 
arXiv:1307.5051

...and now 
with baryons!



Step 2:
Use multiple LSS probes in dataset
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FIG. 11. Complete set of the two-point functions we use. The top row shows the CMB-galaxy correlation functions, while the
remaining panels are the galaxy-galaxy correlations. Error bars are from 10,000 Monte Carlos, whose means are the red dashed
lines, and the blue line is the standard ⇤CDM cosmology from WMAP7, with constant biases (not a fit to these data).

address systematic concerns using the methods outlined
in Refs. [53, 56].

However, we do not expect these issues to be corre-
lated with other samples, and should be able to trust
correlations between the quasars and other data sets. In
particular, the quasars have a large overlap in redshift
with the NVSS data. Potential SDSS systematics, such
as airmass and seeing, are survey-specific and should thus
have no correlation with NVSS data. In addition, we find
no correlation with NVSS data and potential systematics
(Galactic extinction, stellar density, synchrotron emis-
sion) that trace the structure of the Galaxy. Further,
we trust correlations between the quasars and the LRGs,
as the LRG sample has already proven to be robust to
systematic fluctuations. Thus, while we do not consider
the quasar ACF as a reliable probe of PNG, we will ex-

ploit the external correlations between the quasars and
the other data sets. Also in this case, this includes the
cross-correlation with the CMB, which for the same rea-
sons should be relatively free from contamination, as also
confirmed by its fequency independence shown in G12.

IV. MODELING THE DATA

A. Data Considered

We have discussed six di↵erent large-scale structure
data sets, which yield six auto-correlations, fifteen cross-
correlations and six correlations with the WMAP CMB
temperature. Our final data set is shown in Fig. 11,
including the galaxy-CMB cross-correlations and the

Giannantonio et al. 2013

Using LSS (and CMB) tracers - correlation functions
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FIG. 15. Comparison of the marginalized posterior probabil-
ity distribution on fNL using the parts of our data set giving
the strongest contributions. We show the results from sin-
gle cross-correlation functions (top, green), auto-correlations
(center, blue), and from combined sub-samples of the whole
data set (bottom, red). The lines correspond to 68 and 95%
ranges, have been marginalized over the cosmological param-
eters, and include the WMAP7 CMB priors. The points
represent the mean values of the posterior likelihoods. The
results from single auto-correlation functions have also been
marginalized over one bias parameter and one stellar contam-
ination fraction (for the SDSS samples). The NVSS ACF
result appears weaker than expected beacuse it features a
double peak in fNL. To best present the relative constrain-
ing power of the cross-correlation measurements, we have
placed priors on the bias and stellar contamination parame-
ters, which significantly overstate the constraints these cross-
correlation allow on their own. See the main text for more
details.

generacy between  and fNL is present only when using
the quasar ACF alone.
We summarize the constraints on fNL in Table III and

in Fig. 15 for clarity. Here we compare the marginal-
ized results obtained when using the most constrain-
ing parts of our data set. We can see once again
that most results agree with Gaussian initial conditions,
and with each other. When considering single auto-
correlation functions, we marginalize over cosmology in-
cluding the WMAP CMB likelihood, and over one bias
parameter and one stellar contamination fraction (for the
data derived from SDSS). To better interpret the cross-
correlations on their own, we have assigned Gaussian pri-
ors on the relevant bias and stellar contamination pa-
rameters equal to the posteriors on these parameters ob-
tained from the ‘fair’ data. Applying these priors allows

us to accurately portray the relative importance of each
cross-correlation to our bottom-line results. Further-
more, we found that applying the bias prior to the auto-
correlations would increase the precision of their fNL con-
straints by a factor of two. Accounting for this factor, the
LRG auto-correlation is the best-constrained measure-
ment that enters the ‘conservative’ data set. When using
the LRG ACF only we recover a result consistent with the
recent analysis by Ref. [37], who found �45 < fNL < 195
at 95% using the spectroscopic sample of the CMASS
LRGs, which contains ⇠ 1/3 of the photoz sample we
use.

Notice that the factor (b1�1) within the bias correction
�b is the leading contribution that determines the size
of the fNL error bars. For this reason, the low-bias data
from 2MASS, the SDSS main galaxies, and HEAO bring
little information on fNL. Also the external correlations
of the quasars bring less contribution than it may be
expected, since the quasar bias at low redshift is also
low. This explains why the strongest constraints come
from NVSS, the LRGs and their external correlations.
For this reason, we have also checked the e↵ect of the
assumed NVSS bias evolution with one additional run
where the evolution parameter �NVSS is let free, and we
found no significant changes in the results.

The a
NL

Model We then extend our model to gen-
eralized PNG defined in Eq. (8): in addition to fNL,
we thus allow for scale dependence of the bias of any
slope aNL, which reduces to aNL = 2 in the local, scale-
independent case. We show our marginalized posterior
likelihood distribution in the top panel of Fig. 16, where
we can see that, in line with the lack of evidence for fNL,
there is no evidence for aNL either. The full marginalized
upper limit we find is aNL < 1.7 at 95%, but it must be
born in mind that there is an infinite degeneracy along
the direction fNL = 0 by construction: thus, this result
is strongly dependent on our adopted priors, rather than
being a “stand-alone measurement”. The correspondent
bound on nfNL

can be found using Eq. (10).

The g
NL

Model We finally consider the gNL model.
We shall here make the optimistic assumption that the
fitting formula of Eq. (7) is a reasonable approximation
to the e↵ect of gNL, keeping in mind that this may not be
accurate in all cases due to the low bias of our catalogs.
Under this assumption we find �4.5·105 < gNL < 1.6·105
(95%) if assuming fNL = 0. However as shown by
Refs. [64, 65], and as clear from Eq. (1), there is a de-
generacy between fNL and gNL, as both parameters pro-
duce a scale dependence of the bias of the same order
⇠ k�2; the degeneracy is alleviated by the di↵erent red-
shift dependences. This is indeed what happens when
we consider the complete model where both parameters
are left free: we can see in the bottom panel of Fig. 16
that the marginalized posterior presents this degeneracy,
as demonstrated with N -body simulations by Ref. [65].
Also in this case the Gaussian model remains well within
the 95% region: the marginalized constraints on the two
parameters are marginally degraded to �23 < fNL < 42
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FIG. 5: The total covariance matrix obtained with 5000
Monte Carlos, normalised. The top panel shows the
temperature-only Monte Carlos, while the bottom panel is the
result of the full Monte Carlos. While the diagonal (single ex-
periment) covariances are similar, those between experiments
(off-diagonal) are somewhat different.

1. 2MASS

From Fig. 3 it is clear that the CCF for the 2MASS
survey is consistent with zero. Previous analyses of
these data found some evidence for a positive correla-
tion [11, 12]; however, these were performed in Fourier
space and included modelling of the SZ effect, which man-
ifests itself with anti-correlations at small angular scales.
Indeed, it appears in Fig. 3 that the observed CCF turns
over at small angles. If the smallest four angular bins
are removed, the fit to the CCF is consistent with the
ΛCDM theory; however, it is only significant at the ∼ 1σ
level. In any case, 2MASS appears to have the least sig-

nificant evidence for cross-correlations.

2. SDSS galaxies

The main galaxy sample from the SDSS has a mea-
sured CCF which is also in good agreement with the the-
ory. In this case, we note that we do not find agreement
with the previous result of [13], who reported a measured
CCF of almost double the amplitude that we detect.

After discussions with the authors [13], we jointly
found this discrepancy resulted from an additional clean-
ing cut, where they discarded all galaxies with a large
error on their Petrosian r magnitude, imposing the con-
dition petroMagErr r < 0.2. Imposing this same condi-
tion, we found that we could reproduce their result. Fur-
ther, masking those areas with high proportion of Pet-
rosian error also gave similar results.

However, the motivation for such a cut is unclear. It
is known that the Petrosian magnitudes are not accu-
rate for faint objects, for which the best estimator is
the model magnitude [55]. While having objects with
a well measured magnitude is desirable, we see no reason
why cutting galaxies on the basis of a poor estimate of
their magnitudes should double the correlation with the
CMB. This could happen if it were produced by some
foreground mechanism, such as seeing or reddening, but
we checked that none of the possible foreground maskings
raised the CCF in any way comparable to the aforemen-
tioned cut.

Therefore, lacking a valid reason to include this cut,
and preferring to be conservative, we do not make the
Petrosian error cut and our CCF is thus lower than seen
by Cabré et al. [13]. While it is worrying that a choice of
masking has such a dramatic effect on the amplitude of
the observed cross-correlation, it should be noted that the
cross-correlation was largely independent of other mask-
ing choices.

3. SDSS MegaZ LRGs

The result for the LRG is the highest in comparison
with the ΛCDM theory. It agrees with the result of [13].
A direct comparison with [17] and [16] is more difficult
because these analyses use multiple photometric redshift
bins. Concentrating on [17] (since it also does its analy-
sis in physical space, rather than Fourier space), we find
approximately the same detection significance as their
single redshift bin measurements for similar data sets.
An updated version of this paper (available on the astro-
ph archive, but also unpublished) calculates a global χ2

value using all four of their LRG samples, and detects
a CCF with significance somewhat higher than we mea-
sure in this work. This is likely due in part to a somewhat
larger redshift baseline for their measurement as well as
the fact that they calculated their covariance matrix us-
ing a method similar to our MC1 case. As one can see

Giannantonio et al. 2013
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Figure 8. Total cross-correlation matrix of the peak abundance Φ, the peak-peak correlation function ωa
pp, and the stacked peak profiles

γT . ωa
pp and γT are evaluated for peaks with S{N ě 4.75, while Φ contains the peaks with S{N ě 2.6. From left-right and down-up,

we plot the correlations of Φ, ωa
pp, γT , with the S{N and angular scales (measured in arcmin) increasing in the same directions. The

correlation matrix is computed from 128 fields of 12 ˆ 12 deg2 corresponding to the fiducial cosmology and is rescaled to match a sky
coverage of „ 18000 deg2.

the survey specifications given in section §2, this makes our
study representative for two future surveys, lsst and Euclid .

Figure 8 presents the cross-correlation matrix r of these
probes. By far, γT has the strongest correlation coefficient
of the three: „ 0.7 on scales 2 ´ 20 arcmin. For the peak
function, the low-S{N bins are the most correlated „ 0.5
for S{N ď 5. This was already established in our earlier
work (Marian et al. 2012), and it can be explained through
the better-known behaviour of halos: small-mass halos are
sample-variance dominated, while the large and rare ha-
los follow the Poisson distribution (Hu & Kravtsov 2003;
Smith & Marian 2011). Note however how the smallest-S{N
bins in Figure 8 seem to be completely uncorrelated: this is
most likely due to the overwhelming number of shape-noise
peaks, which are random, unclustered, and therefore uncor-
related. ωa

pp displays the smallest correlation coefficient of
the three, „ 0.3 ´ 0.4 on the scales 20 ´ 60 arcmin, with
weaker correlations on smaller scales. We further note the
weak cross-correlation of ωa

pp and Φ, as well as ωa
pp and γT .

There is a visible cross-correlation of Φ and γT , of „ 0.3 for
peaks with S{N ą 7. This is most likely due to the stacked
profiles being dominated by the most massive peaks, which
also dominate the high-S{N end of the peak function. Ta-

ble 2 presents the unmarginalized and marginalized 1-σ er-
rors resulting from the three peak probes. Each probe taken
by itself, the abundance of peaks has the greatest constrain-
ing power, followed by the profiles, and then by the corre-
lation function. Regarding the latter, we note that ωa

pp and
ωc
pp yield very similar constraints, the auto-correlation be-

ing more effective for w and Ωm – a reduction by factors
of „ 2 and „ 1.5 respectively in these errors, compared
to the cross-correlation. However, when combined with the
other two probes, there is little difference between ωa

pp and
ωc
pp. The greatest benefit to adding the correlation func-

tion or the profiles to the abundance of peaks concerns the
time-independent equation-of-state for dark energy: after
marginalizing over the other parameters, the errors on w re-
sulting from Φ and ωa

pp taken individually are similar, while
the profiles seem to yield a constraint tighter by a factor of
„ 1.7. When all three probes are combined, the constraints
on Ωm, σ8, ns improve by a factor of „ 1.5 ´ 2 compared to
using Φ alone, while for w the improvement is „ 2.5. Lastly,
combining Φ and γT is almost as efficient as using all three
probes: the contribution of the correlation functions to re-
ducing the errors is negligible, if both the abundance and
the profiles are used.

c© 0000 RAS, MNRAS 000, 000–000
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Step 3:
Control the Systematic Errors



Systematic errors 

‣ Already a limiting factor in measurements

‣ Will definitely be limiting factor with Stage-IV quality 
data

‣ Quantity of interest: (true sys. − estimated sys.) 
difference

‣ Self-calibration: measuring systematics internally 
from survey



Example I: photometric redshift errors
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Example II: LSS calibration errors
The large-scale angular power spectrum in the presence of systematics: a case study of SDSS quasars 11

(a) Stellar density (b) Extinction (c) Airmass (d) Seeing (e) Sky brightness

Figure 11. Systematics templates used in this analysis, and the (dimensionless) angular power spectra C̃` of their overdensity maps.

(a) Mask 1 (b) Mask 2 (c) Mask 3

Figure 12. Masks used for the power spectrum analysis of RQCat, in Equa-
torial coordinates. Retained regions are based on thresholds summarised in
Table 2 and the systematics templates of Fig. 11. Additional excised rect-
angles follow Pullen & Hirata (2012). The three masks respectively have
f
sky

= 0.148, 0.121, and 0.101.

3.5 Power spectrum results

We obtained angular band-power estimates with the QML estima-
tor and multipole bins of size �` = 11, which led to a good
balance in terms of multipole resolution and variance of the esti-
mates. We did not use the PCL estimator for the final results be-
cause the geometry of the second and third masks, in addition to
the presence of systematics, yielded significantly suboptimal esti-
mates. To illustrate this point, Fig. 13 shows a comparison of the
PCL and QML covariance matrices and the band-power estimates
of the Mid+High-z subsample for the three masks. Any signifi-
cant increase of the PCL variance compared to that of QML, es-
pecially on diagonal- and nearly-diagonal elements which contain
the most significant contributions, demonstrates the suboptimality
of the PCL prior. For the first mask, the PCL variance of these el-
ements is at most ⇠ 20% greater than the QML variance, indicat-
ing that the resulting estimates are nearly optimal. However, for
the second and third masks, these elements have a PCL variance
up to ⇠ 50% greater than that of QML, and the resulting PCL
estimates significantly differ from the optimal QML estimates, as
shown in the bottom panel of Fig. 13. This effect is less pronounced
for larger multipole bins (e.g., �` = 31), as the likelihood be-
comes less sensitive to the priors on the pixel-pixel covariance ma-
trix. However, the resulting loss of resolution prevents the study of
localised multipole ranges affected by systematics. For these rea-
sons we opted for the QML estimator with �` = 11 in the fi-
nal analysis. We systematically marginalised over the values of the
monopole and the dipole by projecting them out. We used the val-
ues ¯

G

�1

= 1.95 · 10�5

, 1.55 · 10�5

, 1.85 · 10�5 and 8.15 · 10�6

respectively for the shot noise of the four RQCat subsamples, cal-
culated from the average number count per steradian assuming 5%

stellar contamination.

The auto- and cross-spectra of the four RQCat samples are
presented in Figs. 14 and 15, and the �

2 values of the theory pre-
diction are listed in Table 3. We subtracted the shot noise from the
auto-spectra, and used a constant bias, bg = 2.3, following pre-
vious studies of these data (Slosar et al. 2008; Giannantonio et al.
2006, 2008; Xia et al. 2010; Pullen & Hirata 2012). The theory pre-
dictions are summarised in Fig. 10. We also used the exact window
functions Wb` for converting the theory power spectra into band-
powers; see Eq. (17). Figure 16 shows the cross-correlation power
spectra of the quasar samples with the systematics templates, and
Table 4 lists the corresponding �

2 values. Details of the �2 compu-
tation are contained in Appendix C.

In Figs. 14 and 15, the top panels show the final band-power
estimates, where the modes corresponding to the five systematics
templates were projected out. The effect of mode projection on the
estimates is illustrated in the bottom panels, showing the differ-
ences in the QML estimates. Hence, these values can be added to
the estimates in the top panels to recover the results without mode
projection. The change in the covariance of the estimates due to
mode projection is negligible.

3.5.1 Reference mask

Our first mask, which is similar to that used in previous studies
of RQCat (Slosar et al. 2008; Giannantonio et al. 2006, 2008; Xia
et al. 2010; Pullen & Hirata 2012), is mostly based on extinction,
stellar density and seeing cuts, and also excises a few pixels with
extreme values of airmass and sky brightness. When using this ref-
erence mask, the auto-spectrum estimates of the four RQCat sub-
samples exhibit significant excess power in the first multipole bin.
In particular, the cross-correlation of the Low-z sample with the
other samples confirm the presence of systematics in common. The
cross-spectra of the quasar subsamples with the systematics tem-
plates, shown in Fig. 16, enable us to identify the main sources
of contamination responsible for this excess power. In addition to
seeing and airmass, which are the main contaminants in the four
samples, stellar contamination affects the Low-z sample, and dust
extinction and sky brightness contaminate the Mid-z and High-z
samples.

The auto- and cross-spectra are marginally improved by pro-
jecting out the modes corresponding to the systematics templates,
as shown by the small decrease in the �

2 values, summarised in
Tables 3 and 4. In particular, the large-scale power excess persists,
confirming the conclusions by Pullen & Hirata (2012) that the con-
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Leistedt et al 2013
see also Ho et al 2012; Huterer et al 2013

• dominate on large angular scales
• can be measured, removed using same or other data



10�1 100 101

kmax

10�3

10�2

10�1

100

101

102

p �
(w

a
)�

(w
p
)

kNL

1-halo dominated

no nuisance parameters
5 Coupon HOD parameters
5 piecewise HOD parameters

Cunha, Huterer & Doré 2010 Heidi Wu

Conclusion:

LSS has a lot to offer; 
many handles on both physics (NG/DM/DE) and systematics


