A Few Comments and Questions

- Cosmological observables offer a unique opportunity to learn about neutrino properties. Reach superior to that of lab experiments – but think complementarity!
- Main issue: how do we know we are learning about neutrinos?
 - What if there is something out there mimicking neutrinos?
 - Systematics: results seem to fluctuate depending on which observables are being used, which assumptions are being made.
 - "Robustness" of result. Can we trust a positive result?
- Will we learned about neutrinos from cosmology, or about cosmology from neutrinos?

Combining the Different Neutrino Mass Observables – Fundamental

[Illustrative only, for $U_{e3} = 0$, $\Delta m_{13}^{2+} = +2.50 \times 10^{-3} \text{ eV}^2$, $\Delta m_{13}^{2-} = -2.44 \times 10^{-3} \text{ eV}^2$]