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Welcome to Colloquium

Three talks

° Exploring Dark Sectors (Dark Photons & sub-GeV Dark Matter)
(Rouven Essig)

* Axions,Axion-like particles, & Chameleons
(William Wester)

* Why Searches for Dark Sectors are Important
(Nima Arkani-Hamed)

Panel Discussion

Moderator: John Jaros
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The State of Particle Physics 2013

The success of the Standard Model is a triumph

It is the result of several decades of
theoretical & experimental exploration, of
pushing at the boundaries of what we knew

But we are not done!
Standard Model is not satisfactory

Several sharp pieces of evidence for New Physics exist
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Dark Matter: powerful evidence for New Physics

Dark Energy
73%

Atomic Mat&}

46% / \
Light Neutrinos

L 0.0034%

But what is it?

It doesn’t have to be a WIMP at the Weak-scale!

LHC results challenge connection between
dark matter and Weak-scale naturalness

Dark matter suggests the presence of a dark sector,
neutral under all Standard Model forces
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Many, rich Dark Sectors!?

Why should Standard Model sector be special?

Dark Energy

What if Dark Sector
?

is equally rich?

What if there are

many Dark Sectors? —
4.6%

g/ \

. Neutrinos
LR 0.0034%

How could
we know? Rich, intricate

structure!
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Dark Sectors

* motivated by dark matter, but also by theory,
strong CP, data (e.g. muon g-2 & astrophysics)

* several well-motivated possibilities, emphasizing the
need to go beyond standard experimental searches

e probe with a rich, diverse, and relatively inexpensive

experimental program

e naturally situated in intensity frontier, but strong

connections to cosmic and energy frontiers

A discovery would be a game-changer
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Dark Sectors

A dark sector consists of particles that do
not interact with known forces

4 A ~ N
Standard Model Dark Sector
+ forces + particles
g w ’ 2 dark matter?
\ \/ ’ k —
unlike matter that interacts with
Known Forces known forces, dark sector particles

can be well below Weak-scale

strong, weak, EM



" Standard Model

g W-

-7

Portals”?

?
)

Dark Sector

forces + particles
dark matter?

~N

only a few important interactions exist that
are allowed by Standard Model symmetries
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“Neutrino” i (HL)N

axions & axion-like
particles (ALPs)

dark photon A’

exotic Higgs decays!

sterile neutrinos!?
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Portals

this talk our focus today

axions & axion-like
particles (ALPs)

dark photon A’
. )
° “HiggS” )\HQSQ _|_,U HQS exotic nggs deca)'s.
. S
e “Neutrine” k (HL)N sterile neutrinos!’
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Dark Photons

" Standard Model
g W=,z 7

k \/ )

Known Forces

dark matter?

|

-

-

Dark Sector

A’ (massive)

~

J

New force: U(7)
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Dark Photons

ordinary photon & A’ can mix

A/
( Standard Model \J\/X\/\; Dark Sector \

g w=,zZ 7 € A’ (massive)

_ € Y., uv o/ “l/ . ¢ 99
AL = 5 I Kinetic Mixing

Galison, Manohar

Holdom

simplest Dark Sector consists of just an A’



Generating Kinetic Mixing

e.g. loops of heavy particles
charged under photon and A’

s

e~ 107° — 10" a motivated target
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Mixing with photon allows:

A’ coupling to quarks and charged leptons:

q, 0"

q, "

and

for low A" masses, can also get

A ¥ “oscillation” (like V’s)



low-mass (< MeV) A’ parameter space
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Experimental techniques often similar to axion/ALP searches,
but A’ <> 7y conversion doesn’t require magnets
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Another well-motivated target:
ma’ ~ MeV-GeV

origin of this scale can be naturally related
to Weak-scale by a small parameter

e.g.in some models

mnm Ar \/EMZ SJ 1 GeV

e.g.Arkani-Hamed & Weiner;
Cheung, Ruderman,Wang, Yavin;
Morrissey, Poland, Zurek;



Hints for A" with MeV-GeV mass?

anomalous muon g-2 ?
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Hints for A" with MeV-GeV mass?

anomalous muon g-2 ? Bochm, Faye
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New dark matter interactions?

AMS-02 (6.8 million e*, e~ events)
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Hints for A" with MeV-GeV mass?

New dark matter interactions?

AMS-02 (6.8 million e*, e~ events)
I I 1 LI III I I I L
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The positron fraction is steadily increasing from 10 to ~250 GeV
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positron fraction

Hints for A" with MeV-GeV mass?

New dark matter interactions?

AMS-02 (6.8 million e*, e~ events)
LI I I I 1 LI l I I I L
The positron fraction is steadily increasing from 10 to ~250 GeV

From 20 to 250 GeV, the slope decreases by an order of magnitude
. No structure in the spectrum
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positron, electron energy [GeV]

cosmic-ray e*, e excesses!

PAMELA, Fermi,AMS2...

Arkani-Hamed et.al.; Cholis et.al.; Pospelov & Ritz

DM A’ /as

/-
m~TeV
A’ /A

DM a

(decays involving A" also possible)

Viability is actively debated, large systematic uncertainties
it made us realize amazing possibilities at GeV-scale!
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Hints for A" with MeV-GeV mass?

New dark matter interactions?
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direct detection hints?

DAMA, CoGeNT, CRESST, CDMS-Si
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Nucleus Nucleus

hard for Standard Model
mediators, easier for
light mediators
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Hints for A" with MeV-GeV mass?

New dark matter interactions?

DM DM
Dark matter

self-interactions?

/
e.g. Spergel & Steinhardt; Loeb & Weiner; A
Kaplinghat, Tulin, Yu

DM DM

new, light mediators have implications for
wide range of actively studied phenomena



How to look for A" with MeV-GeV mass!?



How to look for A" with MeV-GeV mass!?

RE, Schuster, Toro
Batell, Pospelov,Ritz

e*e™ colliders Recce, Wang

Borodatchenkova et.al.
Fayet
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How to look for A" with MeV-GeV mass!?

RE, Schuster, Toro
Batell, Pospelov,Ritz

e'e” colliders Sty
Fay.et.
¢ o
\\NV Rare meson decays
¢ — nA’
70— ~A’

_|_
e
/mA/% ete ,utu T, T,

B-factories, Phi-factories

searches completed/ongoing/planned



How to look for A" with MeV-GeV mass!?

Bjorken, RE, Schuster; Toro
Freytsis, Ovanesyan, Thaler
Reece & Wang

New & old e fixed target experiments



How to look for A" with MeV-GeV mass!?

Bjorken, RE, Schuster; Toro
Freytsis, Ovanesyan, Thaler
Reece & Wang

New & old e fixed target experiments

look for A" = e'e-
resonance or
displaced vertex



How to look for A" with MeV-GeV mass!?

Bjorken, RE, Schuster; Toro
Freytsis, Ovanesyan, Thaler
Reece & Wang

New & old e fixed target experiments

look for A’ = ete-

resonance or e.g. SLAC, JLab, MAMI, ...

displaced vertex
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How to look for A" with MeV-GeV mass!?

Proton-beam fixed target experiments < ™"

RE, Harnik, Kaplan, Toro

Example: produce A’ from pion decays

Target Decay Shield Detector
pipe

LSND, OscSNS, MiniBooNE, MicroBooNE, MINOS, NOvA, LBNE, Project X ...
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Current constraints (A’ — visible)

ed BaBar
APEX/MAMI

Test Runs

past -
electron + proton 10
beam dumps ‘

supernova

Pospelov;

Bjorken, RE, Schuster, Toro
Andreas, Niebuhr, Ringwald
Batell, Pospelov, Ritz;

RE, Harnik, Kaplan, Toro 10 S S L

Blumlein, Brunner; ~

Dent, Ferrer, Krauss O OO 1 O O 1 O 1 1
RE, Schuster, Toro, Wojtsekhowski

KLOE, APEX, MAMI/A| Collaborations my (GeV)

Davoudiasl, Lee, Marciano;
Endo, Hamaguchi, Mishima
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Current constraints (zoomed in)

1072
g-2 of e, M
—
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Test runs of new
e-FT experiments
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Current constraints (zoomed in)

large 10-2
unexplored
region!

107

Region motivated

by theory, g-2, "

direct detection, 1074
astrophysics, ...

need new
experiments

1073 102 10~! 1

Bjorken, RE, Schuster, Toro
Freytsis, Ovanesyan, Thaler ma (G@V)

Reece & Wang
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(JLab)

cost: ~$100k, $2M

VEPP-3 (Russia)
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New Experiments (A’ — visible)

1072

APEX, HPS, DarkLight
(JLab)

-3 \ | IVt S

cost: ~$100k, $2M 10 / o Runs |

)

VEPP-3 (Russia) 10~4

MAMI/MESA (Germany)

1073

103 102 107! 1
na (GGV)
~J-year timescale
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Future? (~10-20 year timescale)

-2
Rest of space is 10

also motivated!

1073

Bapar
APEX/MAMI ]

We need to:
* close gaps

* higher ma’ Y
10 -
* lower €
Belle Il
10—5 _
e.g.
upgraded “HPS-like” L
(24x luminosity, 2x vertex resolution) 103 102 101 1
Graham & Nelson my (GeV)

many other possibilities!
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Dark Photons

Recall:

simplest Dark Sector consists of just an A’ at low energies

" Standard Model

g w=,72 7

AVAV) VAV

Dark Sector

A’ (massive)

~N

J

Dark Sector can easily be richer,
so must look for other signals too

Example: sub-GeV Dark Matter + A’



sub-GeV Dark Matter

Dark matter does not have
to be at the Weak-scale!



sub-GeV Dark Matter

Dark matter does not have
to be at the Weak-scale!

sub-GeV dark matter is allowed

(an old idea, e.g. Boehm, Fayet, ...)



sub-GeV Dark Matter

Dark matter does not have
to be at the Weak-scale!

sub-GeV dark matter is allowed

(an old idea, e.g. Boehm, Fayet, ...)

Constraints from e.g. Cosmic Microwave Background disfavor
thermal WIMPs annihilating to charged matter below ~10 GeV...

not applicable to other models

(asymmetric, WIMPless, freeze-in, sub-dominant, ...)
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sub-GeV Dark Matter

very rich phenomenology

(much of it still under active investigation)

Can probe in similar ways to Weak-scale DM

focus on [ e colliders
this now Le fixed-target (p & €)
¢ C|II"eCt deteCt|On = RE, Mardon,Volansky;

+ w/ Manalaysay, Sorensen;

* indirect detection Graham etal.
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Constraints for A” = invisible

10~
Produce A’ directly

A" — DM + DM

Constraints from:
(g _ 2)6 (g o 2)#

K — mui (e.g E787,E949)

Batell, Pospeloyv, Ritz

1074

K-rA'
E787, E949

0001 001 0.1 1

mey (G@V)

10



Constraints for A" — invisible
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Produce A’ directly
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Fayet
Borodatchenkova, Choudhury, Drees



Constraints for A" — invisible
1072

Produce A’ directly
A" — DM + DM

Constraints from:
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Belle II
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RE, Mardon, Papucci, Volansky, Zhong
VEPP-3, DarkLight

Major improvements possible with
ORKA, Belle Il, DarkLight,VEPP-3



Constraints for A” = invisible

Produce A’ directly
A" — DM + DM

Constraints from:
(g _ 2)6 (g o 2)#

K — mui (e.g E787,E949)

BaBar

Belle 11
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+ several new beam dump searches possible too!
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Proton-beam fixed target experiments

Batell, Pospeloy, Ritz
Deniverville, Pospeloyv, Ritz
Deniverville, McKeen, Ritz
Aguilar-Arevalo et.al.

Example: produce A’ from pion decays
A" = DM+DM

DM recoils of e/nucleon in detector

Target Decay Shield Detector
pipe

plenty of room for future exploration at neutrino facilities, e.g.
LSND, OscSNS, MiniBooNE, MicroBooNE, MINOS, NOvA, LBNE, Project X ...



Proton-beam fixed target experiments

MiniBooNE proposal for sub-GeV DM search

10~4

Nx = Nx my, =10MeV o =a POT =2 x 10*°

J/1v — invisible

e e

Muon g-2 ——

70 — v + invisible
KT —«nt + invisible
MiniBooNE
Relic c}ensity

Monojet ((+JDF) — | -

Ll
0.1

1

™ A’ [GGV]

Aguilar-Arevalo et.al. (MiniBooNE proposal)

e.g. ™MpDM 22211() TVIEf\/

pioneering search for
sub-GeV dark matter
using a neutrino factory

relatively inexpensive,
no new facility



Electron-beam fixed target experiments

Krnjaic, Izaguirre, Schuster, Toro
Diamond, Schuster

Example: produce DM directly from on/off-shell A’

DM recoils of e/nucleon in detector

o 4 e/N
l—‘A,(*) - DM+DM .......... DM)‘: ::
i DM

Target Shield Detector

no beam-related background, small detector, favorable kinematics



Electron-beam fixed target experiments

Krnjaic, Izaguirre, Schuster, Toro
Diamond, Schuster

new parasitic experiments can cover large parameter space robustly
e.g.|Lab, Mainz, SLAC, SuperKEK, ...

1074 oo o ¥ + inv.

10—5.

N, 1075}

10—7.

J/Y¥ - inv.

-8 i
10 m, =10 MeV, ap =0.1
0.01 0.1 1

can also take advantage of linear collider beam dump
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Conclusions

Dark sectors (new, light weakly-coupled particles) are well-
motivated by theory, DM, strong CP, muon g-2, astrophysics, ...

experiments use intense beams & sensitive detectors
small-scale, inexpensive, uses existing facilities/technologies

support for a diverse set of small-scale experiments in US HEP
program is crucial

we don’t know which guiding principle for finding new
physics is reliable; must explore all motivated possibilities

Possible game-changing discovery for low-cost



Backup



How look for low-mass A”?

“Light-shining-through-walls” (cf. axions)

LIPSS (Jlab) , BFRT (BNL), BMV (LULI), GammeV (Fermilab),
ALPS (DESY), OSQAR (CERN), PVLAS (INFN), ...

Need powerful lasers but no magnets



How look for low-mass A”?

Helioscopes: stare at the sun (cf. axions)
Okun, ...
Detector
A’ Y

TSHIPS, CAST, SUMICO, IAXG, ...



Dark Photons

Recall:

simplest Dark Sector consists of just an A’

" Standard Model

g w=,7Z 7

AVAV) VAV

-

Dark Sector

A’ (massive)

~N

J

Dark Sector can easily be richer,
so must look for other signals too

Example 2: non-Abelian or dark Higgs



Several searches done/ongoing/planned

e.g. BaBar
Examples:

non-Abelian
(many gauge bosons)

Dark Higgs boson



http://arxiv.org/abs/1202.1313
http://arxiv.org/abs/1202.1313

D| rect DeteCt|On RE, Mardon,Volansky

probe DM in our halo scattering off

e.g. electrons in detector

“ : first direct detection limits
| | on sub-GeV DM, using
. | Excluded by :

' XENON10 data

published XENON0 data

RE, Manalaysay, Mardon,
Sorensen,Volansky

Hidden—
Photon models

lots of potential

0 100 N0 for current & new
Dark Matter Mass @ expe riments!

Mev ’ see also Graham et.al.



