Question: Hadron Colliders have now surpassed LEP in m_W Precision. Can ILC be competitive in the LHC era?

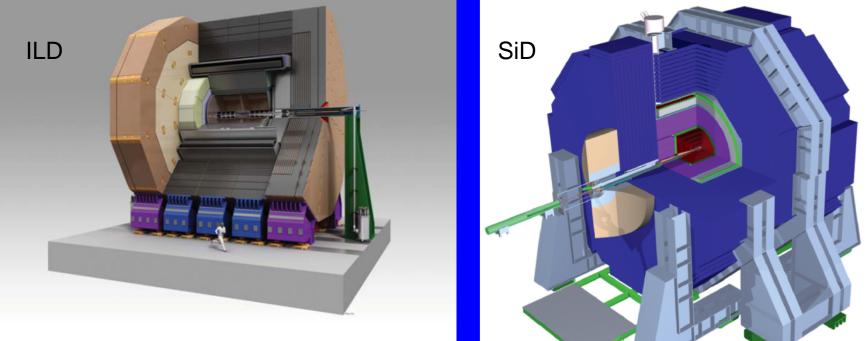
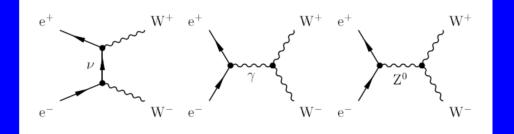
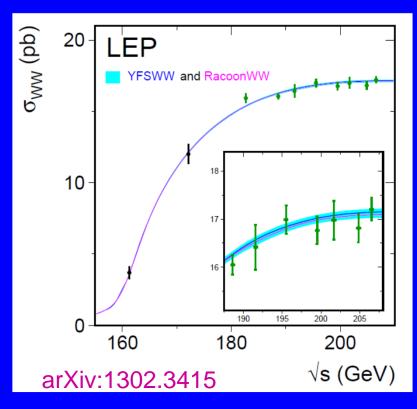
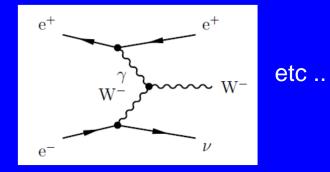


Figure 1.1.1: View of the ILD detector concept.

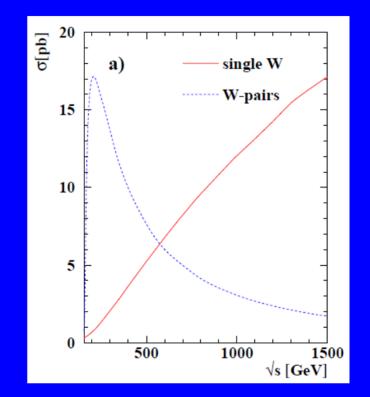

Graham W. Wilson, University of Kansas, Snowmass CSS2013, Minneapolis, August 1st 2013

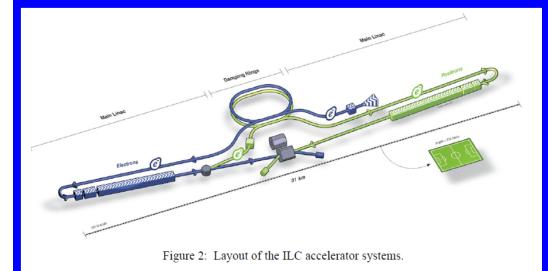
Current Status of m_w and m_z


VALUE (GeV)	EVTS	DOCUMENT ID		TECN	COMMENT	
80.385± 0.015 OUR F	IT					
80.387 ± 0.019	1095k	¹ AALTONEN	12E	CDF	$E_{\rm cm}^{p\overline{p}} = 1.96 {\rm TeV}$	
80.367 ± 0.026	1677k	² ABAZOV	12F	D0	$E_{\rm cm}^{p\overline{p}} = 1.96 {\rm TeV}$	
80.401± 0.043	500k	³ ABAZOV	09AB	3 D0	$E_{\rm cm}^{p\overline{p}} = 1.96 {\rm TeV}$	
$80.336 \pm 0.055 \pm 0.039$	10.3k	⁴ ABDALLAH	08A	DLPH	$E_{\rm cm}^{ee} = 161-209 \; {\rm GeV}$	$\Delta M/M = 1.9 \times 10^{-4}$
$80.415 \pm 0.042 \pm 0.031$	11830	⁵ ABBIENDI	06	OPAL	$E_{cm}^{ee} = 170-209 \text{ GeV}$	
$80.270 \pm 0.046 \pm 0.031$	9909	⁶ ACHARD	06	L3	$E_{cm}^{ee} = 161 - 209 \text{ GeV}$	3 fb ⁻¹
$80.440 \pm 0.043 \pm 0.027$	8692	⁷ SCHAEL	06	ALEP	$E_{\rm cm}^{ee} = 161 - 209 {\rm GeV}$	
80.483± 0.084	49247	⁸ ABAZOV	02D	D0	$E_{\rm cm}^{p\overline{p}}$ = 1.8 TeV	
80.433± 0.079	53841	⁹ AFFOLDER	01E	CDF	$E_{cm}^{p\overline{p}} = 1.8 \text{ TeV}$	
VALUE (GeV)	EVTS	DOCUMENT ID		TECN	COMMENT	
91.1876 \pm 0.0021 OUR F	T					
91.1852 ± 0.0030	4.57M	¹ ABBIENDI	01/	OPAL	$E_{\rm cm}^{ee} = 88-94 {\rm GeV}$	$\Delta M/M = 2.3 \times 10^{-5}$
91.1863 ± 0.0028	4.08M	² ABREU	0 0F	DLPH	<i>E</i> ^{ee} = 88–94 GeV	0 1 fb -1
91.1898 ± 0.0031	3.96M	³ ACCIARRI	000	L3	$E_{\rm cm}^{ee} = 88-94 { m GeV}$	0.4 fb ⁻¹
91.1885 ± 0.0031	4.57M	⁴ BARATE	000	ALEP	$E_{\rm cm}^{ee}$ = 88–94 GeV	


 m_W is currently a factor of 8 less precise than m_Z

W Production in e+e-


 $e+e- \rightarrow W+W-$



3

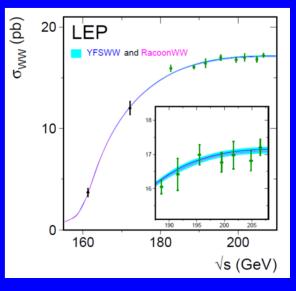
 $e+e- \rightarrow W e v$

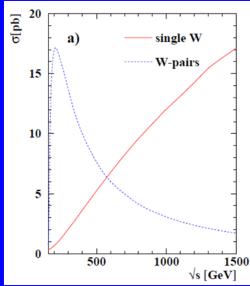
ILC

√s (GeV)	L (fb-1)	Physics
91	100	Ζ
161	160	WW
250	250	Zh
350	350	t tbar
500	1000	tth, Zhh
1000	2000	vvh, VBS

Can polarize both the electron and positron beam. Electron: 80% 90%? Positron 20, 30 ... 60%.

In contrast to circular machines this is not supposed to be in exchange for less luminosity My take on a possible runplan factoring in L capabilities at each \sqrt{s} . Can be further upgraded.

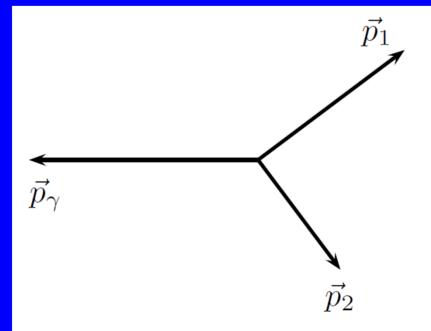

See ILC TDR (available in Humphrey) for more details


W Mass Measurement Strategies

- W+W-
 - 1. Threshold Scan ($\sigma \sim \beta/s$)
 - Can use all WW decay modes
 - 2. Kinematic Reconstruction (qq e nu and qq mu nu)
 - Apply kinematic constraints
- W e v (+ WW)
 - 3. Directly measure the hadronic mass in W → q q' decays.
 - Can use WW -> q q tau nu too

Methods 1 and 2 were used at LEP2. Both require good knowledge of the absolute beam energy.

Method 3 is novel (and challenging), very complementary systematics to 1 and 2 if the experimental challenges can be met.



ILC Experimentation Features

- No trigger necessary.
- Few 100 ns between crossings.
- "Democratic" signal and background.
- Very high efficiency (0.1% errors)
- Absolute luminosity (0.1% errors)
- Initial state beam parameters under good control.
- Initial state radiation correctable.
- Events reconstructible particle by particle.
- All W's potentially useful.
- Essentially no pileup.

"New" In-Situ Beam Energy Method

 $e+e- \rightarrow \mu\mu(\gamma)$

Use muon momenta. Measure $E_1 + E_2 + |p_{12}|$ as an estimator of \sqrt{s} = 161 GeV, Luminosity = 8.2 fb⁻¹ With J. Sekaric Events / (0.0002 4000 mean = 0.999766 ± 0.000013 3500 3000 2500 2000 1500 1000 500 KK MC, e[•]e⁺ (LR) Binned LH fit function (CB 0.96 0.97 0.98 0.99 1.01 √s_p / √s_{nom}

ILC detector momentum resolution (0.15%), gives beam energy to better than 5 ppm statistical. Momentum scale to 10 ppm => 0.8 MeV beam energy error projected on mW. (J/psi)

Beam Energy Uncertainty should be controlled for Methods 1 and 2 for $\sqrt{s} \le 500$ GeV

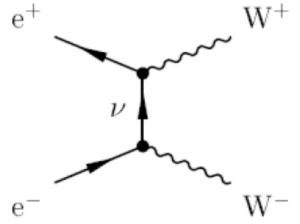
Why have longitudinally polarized beams?

Advantages

- Measure polarized cross-sections and asymmetries to better understand new and old physics
- Improve statistical errors by preferentially selecting preferred beam helicities (best with high |P|)
- Reduce backgrounds in new physics searches

The expected event number, μ , in a particular channel, j, with a particular configuration of signed beam polarizations, (P_{e^-}, P_{e^+}) , exposed to an integrated luminosity \mathcal{L} is

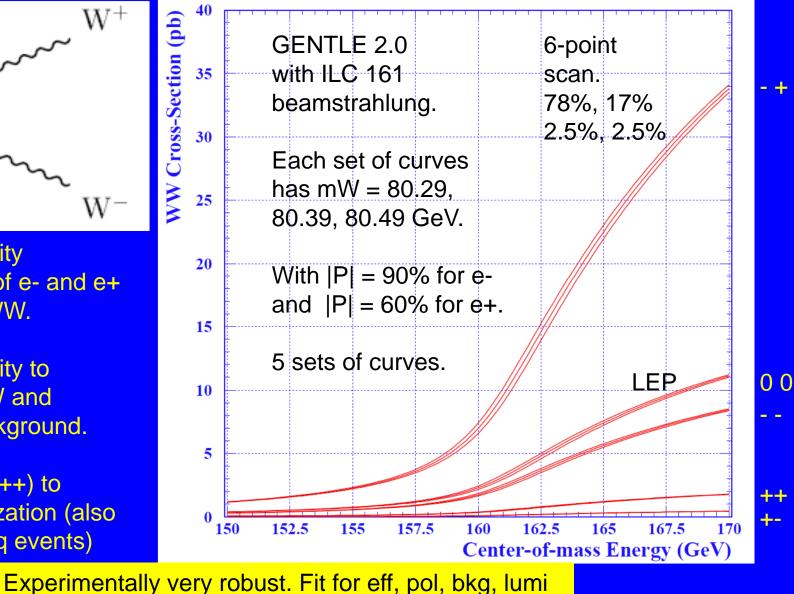
$$\mu = \sigma(P_{\mathrm{e}^{-}}, P_{\mathrm{e}^{+}}) \mathcal{L}$$


where

$$\sigma(P_{\rm e^{-}}, P_{\rm e^{+}}) = \frac{1}{4} \{ (1 - P_{\rm e^{-}})(1 + P_{\rm e^{+}})\sigma_{LR} + (1 + P_{\rm e^{-}})(1 - P_{\rm e^{+}})\sigma_{RL} + (1 - P_{\rm e^{-}})(1 - P_{\rm e^{+}})\sigma_{LL} + (1 + P_{\rm e^{-}})(1 + P_{\rm e^{+}})\sigma_{RR} \}$$

and σ_k (k = LR, RL, LL and RR) are the fully polarized cross-sections.

8


Polarized Threshold Scan

Use (-+) helicity combination of e- and e+ to enhance WW.

Use (+-) helicity to suppress WW and measure background.

Use (--) and (++) to control polarization (also use 150 pb qq events)

- 1. Polarized Threshold Scan
- 2. Kinematic Reconstruction
- 3. Hadronic Mass

Method 1: Statistics limited.

Method 2: With up to 1000 the LEP statistics and much better detectors. Can target factor of 10 reduction in systematics.

Method 3: Depends on di-jet mass scale. Plenty Z's for 3 MeV.

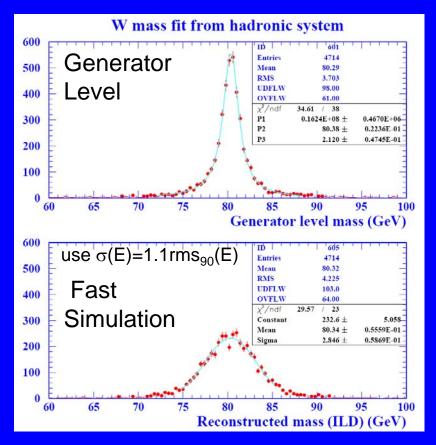
1	0	١
l	Ζ	

LEP2	ILC	ILC	ILC
172-209	250	350	500
3.0	500	350	1000
0	80	80	80
0	30	30	30
9	0.8	1.1	1.6
N/A	1.0	1.4	2.0
13	1.3	1.3	1.3
8	1.2	1.5	1.8
10	1.0	1.0	1.0
3	0.3	0.3	0.3
21	2.4	2.9	3.5
30	1.5	2.1	1.8
36	2.8	3.6	3.9
	172-209 3.0 0 9 N/A 13 8 10 3 21 30	$\begin{array}{cccc} 172\mathcal{-}209 & 250 \\ 3.0 & 500 \\ 0 & 80 \\ 0 & 30 \\ \hline 9 & 0.8 \\ N/A & 1.0 \\ \hline 13 & 1.3 \\ 8 & 1.2 \\ 10 & 1.0 \\ 3 & 0.3 \\ \hline 21 & 2.4 \\ 30 & 1.5 \\ \end{array}$	$\begin{array}{cccccc} 172\mathcal{-}209 & 250 & 350 \\ 3.0 & 500 & 350 \\ 0 & 80 & 80 \\ 0 & 30 & 30 \\ \hline 9 & 0.8 & 1.1 \\ N/A & 1.0 & 1.4 \\ 13 & 1.3 & 1.3 \\ 8 & 1.2 & 1.5 \\ 10 & 1.0 & 1.0 \\ 3 & 0.3 & 0.3 \\ 21 & 2.4 & 2.9 \\ 30 & 1.5 & 2.1 \\ \end{array}$

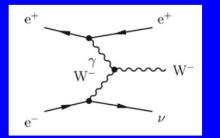
1	ΔM_W [MeV]	LEP2	ILC	ILC
	\sqrt{s} [GeV]	161	161	161
	\mathcal{L} [fb ⁻¹]	0.040	100	480
	$P(e^{-})$ [%]	0	90	90
	$P(e^{+})$ [%]	0	60	60
	statistics	200	2.4	1.1
	background		2.0	0.9
	efficiency		1.2	0.9
	luminosity		1.8	1.2
	polarization		0.9	0.4
	systematics	70	3.0	1.6
	experimental total	210	3.9	1.9
	beam energy	13	0.8	0.8
	theory	-	(1.0)	(1.0)
	total	210	4.1	2.3

(3)	ΔM_W [MeV]	ILC	ILC	ILC	ILC
	\sqrt{s} [GeV]	250	350	500	1000
	\mathcal{L} [fb ⁻¹]	500	350	1000	2000
	$P(e^{-})$ [%]	80	80	80	80
	$P(e^{+})$ [%]	30	30	30	30
	jet energy scale	3.0	3.0	3.0	3.0
	hadronization	1.5	1.5	1.5	1.5
	pileup	0.5	0.7	1.0	2.0
	total systematics	3.4	3.4	3.5	3.9
	statistical	1.5	1.5	1.0	0.5
	total	3.7	3.7	3.6	3.9

Summary

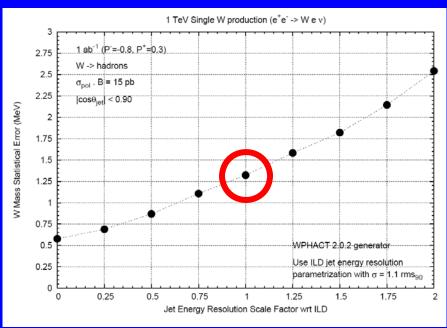

- Current Tevatron combined uncertainty: 16 MeV
- Final Tevatron and <u>first</u> LHC measurements still to come.
- The ILC program (of order 3000 fb⁻¹) can make efficient use of W's.
- Three complementary methods
 - Each currently targets 2-4 MeV
 - Much better precision possible if systematics can be controlled better especially for methods 2 and 3.

Backup Slides


Can one dream of measuring m_w to 1 MeV ?

(and not get locked up ;-))

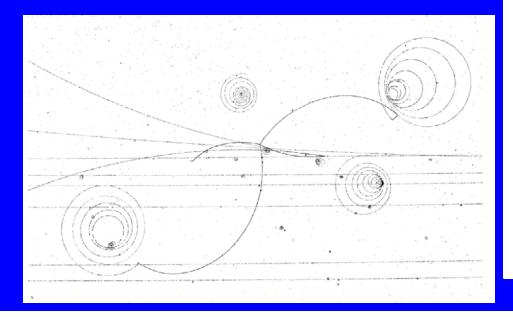
Single W study at $\sqrt{s} = 1$ TeV (e+e-)

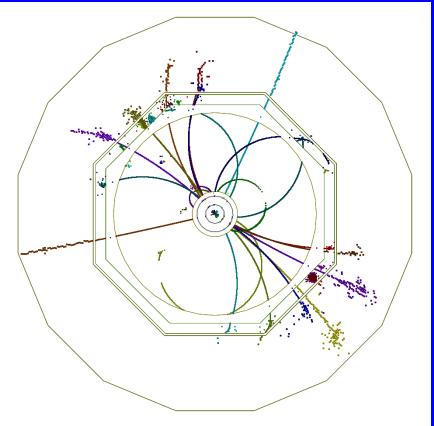


=> Further E_{jet} resolution improvement very desirable

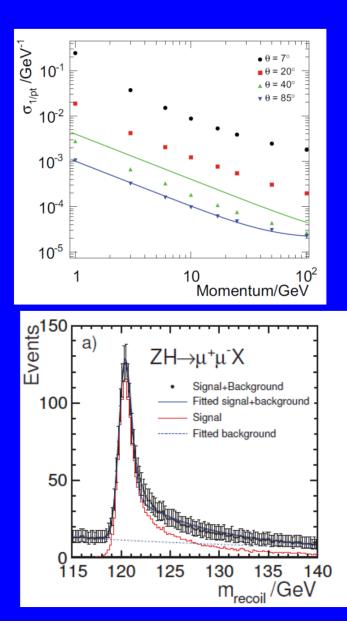
 $W \rightarrow q q$ (jets are not so energetic)

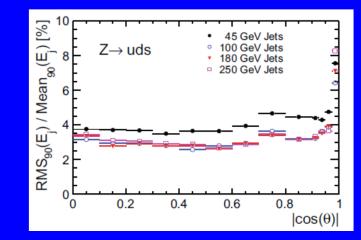
Is this useful for physics? Example m_w.

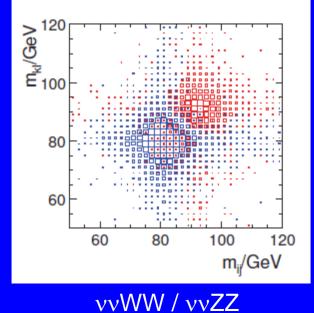



Potentially very useful! (Especially, if the really challenging requirements on jet energy scale and calibration can be met!)

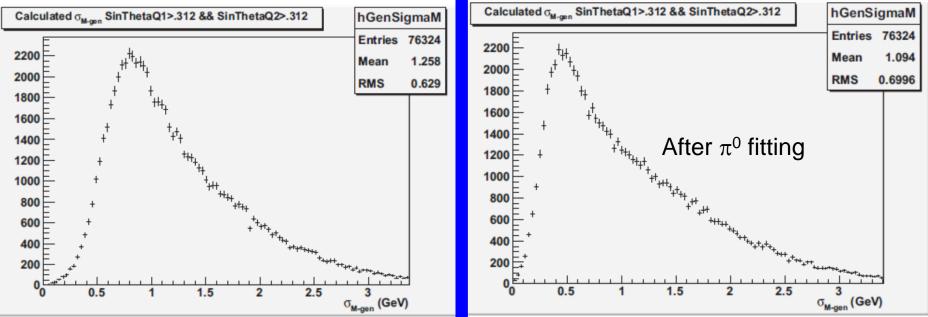
Bubble Chamber


The vision is to do the best possible physics at the linear collider, by reconstructing as far as possible every single piece of each event.


Very much in the spirit of bubble chamber reconstruction – but with full efficiency for photons and neutral hadrons, and in a high multiplicity environment at high luminosity.



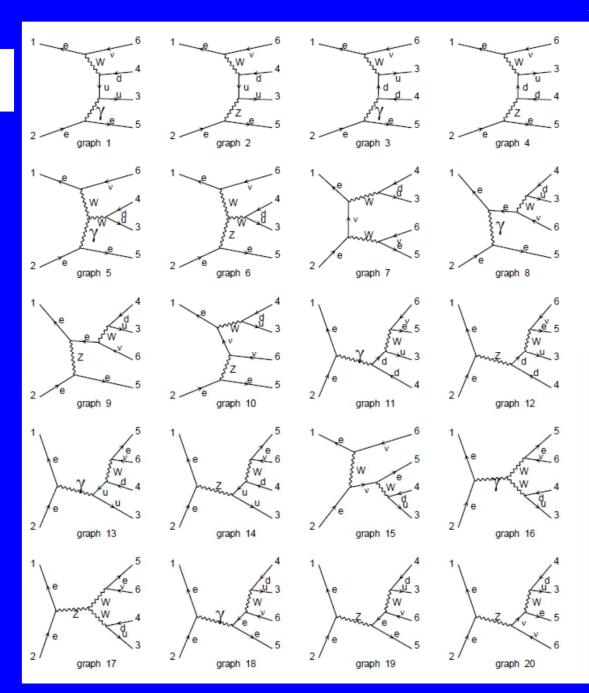
Detector Performance



WW scattering to 4 jets

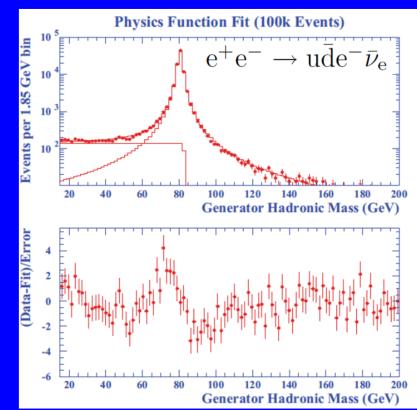
Event-Specific Hadronic Mass Resolution

B. van Doren (KU)

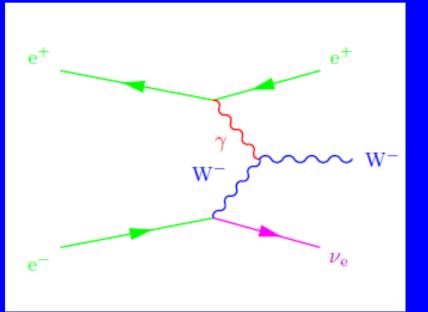

Assumes individual particles are reconstructed, resolved and measured with perfect efficiency, intrinsic detector resolutions and perfect mass assignments.

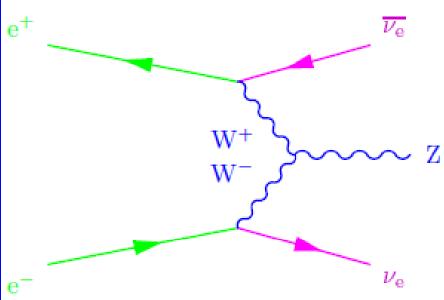
(Also no confusion: valid for low jet-energy and jet multiplicity environment)

Many experimental systematics need to be included: including effects like multiple interactions $(\gamma\gamma \rightarrow hadrons)$


$$e^+e^- \rightarrow u \bar{d} e^- \bar{\nu}_e$$

- CC20
- 4 non-resonant
- 3 are doublyresonant (WW)
- Graphs 5, 8, 15 particularly important.
- Graphs 11-14 have non-resonant ud

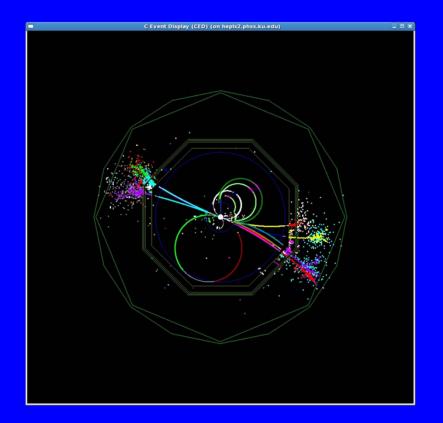

Physics Function


- Ideally, parametrize the physics function ($d\sigma/dm_had$) analytically (M_W , Γ_W as parameters).
- Example: ECM = 500 GeV
- Plot for non doubly-resonant helicity configuration (LL) for illustration.
- Physics function needs the resonance, phase-space, non-resonant background, interference.
- With this in hand it would be fairly trivial to include detector resolution in a convolution fit.

What M_W ? What Γ_W ? s-dependent width? Phasespace? Theoretical input welcome ! May be a problem which naturally needs MC though ...

Z Calibration Methods

$(\Delta M/M)_Z = 2.3 \times 10^{-5}$


Zvv.

Effective cross-section for final states with Z \rightarrow hadrons are around 1.3 pb at 1 TeV.

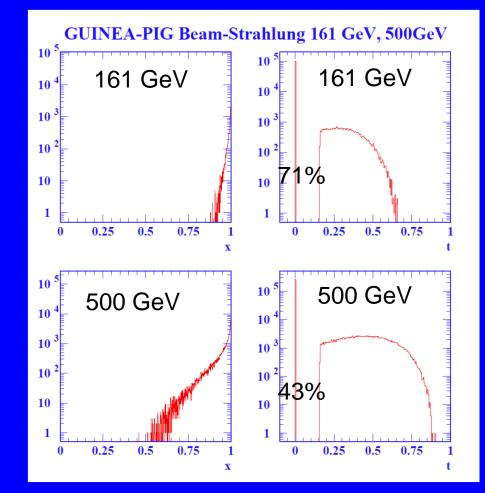
Also Zee. Cross-sections huge (20 pb) when including $e\gamma \rightarrow eZ$. Need to check acceptance.

Jet Energy Scale Particle-by-Particle

- One can also consider calibrating absolutely given the m_z uncertainty.
- Need
 - Tracker p-scale
 - EM Cal E-scale
 - Calorimeter neutral-hadron energy scale
- Can use precisely known particle scales: Λ⁰, π⁰, φ, Σ.
- Also fragmentation errors (K_L, n)

BeamStrahlung

Average energy loss of beams is not what matters for physics.


Average energy loss of colliding beams is factor of 2 smaller.

Median energy loss per beam from beamstrahlung typically ZERO.

Parametrized with CIRCE functions.

 $f \delta(1-x) + (1-f) Beta(a2,a3)$

Define $t = (1 - x)^{1/5}$

In general beamstrahlung is a less important issue than ISR for kinematic fits

t=0.25 => x = 0.999