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Intro
K. S. Babu presented theoretical motivations for 
neutron-antineutron oscillations.
           analog of the search for Majorana neutrino,            .              
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1 Introduction

Since the inceptiōn of QCD till the end of Millennium the prime interest of the QCD
practitioners was the spectrum and properties of the low-lying hadronic states, such
as ρ mesons, pions and nucleons. A number of methods was developed to treat such
states, starting from the soft-pion technique which predates QCD by a decade, then
QCD sum rules, lattice calculations and so on. Little attention was paid to highly
excited states. The reason is obvious: the decay widths of the excited states grow
with the excitation number, so that they overlap and collectivize themselves, and
could be treated as continuum.

In the Regge theory which dominated high energy theory before QCD, highly
excited states played an important role in phenomenological analyses since they
determine the daughter Regge trajectories. The Regge theory gave rise to dual
resonance models which eventually grew into string theory. Ironically, string theory
that emerged from the dual resonance models shortly after became “string theory
for nonhadrons,” and was elevated to the status of “theory of everything” in the
1980s and early ’90s. With this promotion the previous interest to excited hadronic
states faded away. At the same time, in QCD highly excited states were treated as
belonging the the realm of asymptotic freedom which inevitably qualified them as
“dynamically uninteresting objects.”

This attitude changed in recent years with the advent of string–gauge duality
methods, based on the ’t Hooft limit [1] with the number of colors Nc → ∞ while
g2Nc is kept fixed. In this limit the meson decay widths tend to zero, so that
individual highly excited mesons become well-defined.1

1 Baryons, if treated in the standard ’t Hooft procedure, defy this rule; their decay widths,
generally speaking, do not vanish in the limit Nc → ∞, also their masses grow as Nc. However,
theNc → ∞ limit exists for the mass differences, and experiments show that rather high excitations
of nucleons and other baryons can be identified using the existing data.
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Experimental limits on stability of nuclei set the range of 
interest for the free neutron oscillation time       .                                         
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Theory, Friedman, Gal (2008), relates it to       ,                                     
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Number of extra mechanisms was proposed, in particular,

How much it affects the relation between       and     ?
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Since the inceptiōn of QCD till the end of Millennium the prime interest of the QCD
practitioners was the spectrum and properties of the low-lying hadronic states, such
as ρ mesons, pions and nucleons. A number of methods was developed to treat such
states, starting from the soft-pion technique which predates QCD by a decade, then
QCD sum rules, lattice calculations and so on. Little attention was paid to highly
excited states. The reason is obvious: the decay widths of the excited states grow
with the excitation number, so that they overlap and collectivize themselves, and
could be treated as continuum.

In the Regge theory which dominated high energy theory before QCD, highly
excited states played an important role in phenomenological analyses since they
determine the daughter Regge trajectories. The Regge theory gave rise to dual
resonance models which eventually grew into string theory. Ironically, string theory
that emerged from the dual resonance models shortly after became “string theory
for nonhadrons,” and was elevated to the status of “theory of everything” in the
1980s and early ’90s. With this promotion the previous interest to excited hadronic
states faded away. At the same time, in QCD highly excited states were treated as
belonging the the realm of asymptotic freedom which inevitably qualified them as
“dynamically uninteresting objects.”

This attitude changed in recent years with the advent of string–gauge duality
methods, based on the ’t Hooft limit [1] with the number of colors Nc → ∞ while

3

O∆B=−2 = uudddd

qi
Lα , qk

Rα̇ , i, k = 1, 2, 3 ,α, α̇ = 1, 2

εijk

εαβ

εα̇β̇

∆I = 1, 2, 3

n ↔ n̄

∆I = 2, 3

τnn̄

p

n

n̄

π+

B, ∆B = 2

〈n̄|c∗OO
†|n〉 = ε ūc
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Operators |∆B|=2
The operators contains two    quarks and four   quarks
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1 Introduction

Since the inception of QCD till the end of Millennium the prime interest of the QCD
practitioners was the spectrum and properties of the low-lying hadronic states, such
as ⇢ mesons, pions and nucleons. A number of methods was developed to treat such
states, starting from the soft-pion technique which predates QCD by a decade, then
QCD sum rules, lattice calculations and so on. Little attention was paid to highly
excited states. The reason is obvious: the decay widths of the excited states grow
with the excitation number, so that they overlap and collectivize themselves, and
could be treated as continuum.

In the Regge theory which dominated high energy theory before QCD, highly
excited states played an important role in phenomenological analyses since they
determine the daughter Regge trajectories. The Regge theory gave rise to dual
resonance models which eventually grew into string theory. Ironically, string theory
that emerged from the dual resonance models shortly after became “string theory
for nonhadrons,” and was elevated to the status of “theory of everything” in the
1980s and early ’90s. With this promotion the previous interest to excited hadronic
states faded away. At the same time, in QCD highly excited states were treated as
belonging the the realm of asymptotic freedom which inevitably qualified them as
“dynamically uninteresting objects.”

Figure 1: The plot shows M2 of various meson resonances which are believed to be built
of q̄q where q = u or d. The resonances at levels 2, 3 and some resonances at 4 level GeV2

are taken from the Particle Data Group (PDG) compilation. Most of those at level 4 and all
resonances at level 5 GeV2 are taken from the compilation of resonances in pp̄ annihilation
prepared by Glozman [2], see also [3]. In selecting the q̄q resonances we followed Kaidalov’s
work [4] in discarding presumed four-quark states, gluonia or resonances built of s̄s.
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In the Regge theory which dominated high energy theory before QCD, highly
excited states played an important role in phenomenological analyses since they
determine the daughter Regge trajectories. The Regge theory gave rise to dual
resonance models which eventually grew into string theory. Ironically, string theory
that emerged from the dual resonance models shortly after became “string theory
for nonhadrons,” and was elevated to the status of “theory of everything” in the
1980s and early ’90s. With this promotion the previous interest to excited hadronic
states faded away. At the same time, in QCD highly excited states were treated as
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with the excitation number, so that they overlap and collectivize themselves, and
could be treated as continuum.

In the Regge theory which dominated high energy theory before QCD, highly
excited states played an important role in phenomenological analyses since they
determine the daughter Regge trajectories. The Regge theory gave rise to dual
resonance models which eventually grew into string theory. Ironically, string theory
that emerged from the dual resonance models shortly after became “string theory
for nonhadrons,” and was elevated to the status of “theory of everything” in the
1980s and early ’90s. With this promotion the previous interest to excited hadronic
states faded away. At the same time, in QCD highly excited states were treated as
belonging the the realm of asymptotic freedom which inevitably qualified them as
“dynamically uninteresting objects.”

This attitude changed in recent years with the advent of string–gauge duality
methods, based on the ’t Hooft limit [1] with the number of colors Nc → ∞ while
g2Nc is kept fixed. In this limit the meson decay widths tend to zero, so that
individual highly excited mesons become well-defined.1

1 Baryons, if treated in the standard ’t Hooft procedure, defy this rule; their decay widths,
generally speaking, do not vanish in the limit Nc → ∞, also their masses grow as Nc. However,
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                                 But for nuclei both parity conserving operators as well 
as the              ones do contribute via two nucleons 
annihilation into pions.

Thus, one can imagine the case of unstable nuclei and no            
free             oscillations.  So there is a complimentarity 
of measurements of oscillations and nuclear stability.   

On the other hand, there are processes 
in nuclei involving not only real but also 
the virtual           transition which 
contribute to the nuclear instability.
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with the excitation number, so that they overlap and collectivize themselves, and
could be treated as continuum.

In the Regge theory which dominated high energy theory before QCD, highly
excited states played an important role in phenomenological analyses since they
determine the daughter Regge trajectories. The Regge theory gave rise to dual
resonance models which eventually grew into string theory. Ironically, string theory
that emerged from the dual resonance models shortly after became “string theory
for nonhadrons,” and was elevated to the status of “theory of everything” in the
1980s and early ’90s. With this promotion the previous interest to excited hadronic
states faded away. At the same time, in QCD highly excited states were treated as
belonging the the realm of asymptotic freedom which inevitably qualified them as
“dynamically uninteresting objects.”

This attitude changed in recent years with the advent of string–gauge duality
methods, based on the ’t Hooft limit [1] with the number of colors Nc → ∞ while
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Estimates 
Let us try to use some kind of duality to find a relation

between the free           oscillations and nuclear stability.
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n̄γ5un |ε| =
!

τnn̄

A
∫

d4x eiqxT{O(x)O†(0)} = cq q̄q + . . .

2|cO|2Im
∫

d4x〈A|T{O(x)O†(0)}|A〉 =
!

τnuc

|cO|2
∫

d4x eiqx〈n|T{O(x)O†(0)}|n〉 ∼
|ε|2

∆

2

where Euclidean         is a relevant hadronic duality scale.                    

O∆B=−2 = uudddd

qi
Lα , qk

Rα̇ , i, k = 1, 2, 3 ,α, α̇ = 1, 2

εijk

εαβ

εα̇β̇

∆I = 1, 2, 3

n ↔ n̄

∆I = 2, 3

τnn̄

p

n

n̄

π+

B, ∆B = 2

〈n̄|c∗OO
†|n〉 = ε ūc
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1 Introduction

Since the inceptiōn of QCD till the end of Millennium the prime interest of the QCD
practitioners was the spectrum and properties of the low-lying hadronic states, such
as ρ mesons, pions and nucleons. A number of methods was developed to treat such
states, starting from the soft-pion technique which predates QCD by a decade, then
QCD sum rules, lattice calculations and so on. Little attention was paid to highly
excited states. The reason is obvious: the decay widths of the excited states grow
with the excitation number, so that they overlap and collectivize themselves, and
could be treated as continuum.

In the Regge theory which dominated high energy theory before QCD, highly
excited states played an important role in phenomenological analyses since they
determine the daughter Regge trajectories. The Regge theory gave rise to dual
resonance models which eventually grew into string theory. Ironically, string theory
that emerged from the dual resonance models shortly after became “string theory
for nonhadrons,” and was elevated to the status of “theory of everything” in the
1980s and early ’90s. With this promotion the previous interest to excited hadronic
states faded away. At the same time, in QCD highly excited states were treated as
belonging the the realm of asymptotic freedom which inevitably qualified them as
“dynamically uninteresting objects.”

This attitude changed in recent years with the advent of string–gauge duality
methods, based on the ’t Hooft limit [1] with the number of colors Nc → ∞ while
g2Nc is kept fixed. In this limit the meson decay widths tend to zero, so that
individual highly excited mesons become well-defined.1

The string–gauge duality-based ideas predict a certain pattern for excited reso-
nances. On the other hand, significant amount of data regarding excited mesonic

1 Baryons, if treated in the standard ’t Hooft procedure, defy this rule; their decay widths,
generally speaking, do not vanish in the limit Nc → ∞, also their masses grow as Nc. However,
theNc → ∞ limit exists for the mass differences, and experiments show that rather high excitations
of nucleons and other baryons can be identified using the existing data.
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what is close to the result obtained by Friedman, Gal 
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 The inclusive approach does include all the mechanisms.                  
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 The above estimate implies that the contribution of 
processes not associated with the            oscillations,
such as two nucleons annihilation into pions are 
suppressed.

This suppression related to the notion of nuclei consisting 
of nucleons not of quarks. Parametrically, it could be 
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where         represents the characteristic nuclear 
momentum (distance between nucleons) while   
        refers to the hadronic momentum scale 
(the nucleon size). The suppression could be not 
that big in reality.
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Conclusions 

Generically,  nuclear disappearance lifetimes are 
sensitive to a wider variety of the              processes
then neutron-antineutron oscillations. 

There is a nuclear suppression for this non-oscillation
part in the nuclei instability.

What is the theoretical accuracy? Needs more work.
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