Sterile Neutrino Global Context and nuSTORM Short-Baseline Sensitivity

Jonathan Link
Center for Neutrino Physics
Virginia Tech

VSTORM Informational Meeting Snowmass, July 3, 2013

The Evidence for Sterile Neutrinos

Aguilar-Arevalo et al., Phys.Rev.D64, 112007 (2001)

Gallium Anomaly (v_e Disappearance)

Giunti and Laveder, Phys.Rev.C83, 065504(2011)

MiniBooNE $(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})$

Aguilar-Arevalo et al., Phys.Rev.Lett. 110, 161801 (2013)

Reactor Anomaly ($\bar{\nu}_e$ Disappearance)

Mention et al., Phys.Rev.D83 073006 (2011)

Evidence from Cosmology

Cosmological data like CMB, Baryon Acoustic Oscillations (BAO), Large Scale Structure, Big-Bang Nucleosynthesis and the Hubble Constant (H_0) are sensitive to the effective number of light degrees of freedom (N_{eff})

 $N_{\rm eff} > 3.046$ may be evidence of a one or more sterile neutrino states

The Evidence Against Sterile Neutrinos

KARMEN $(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})$

Armbruster et al., Phys.Rev.D65 112001 (2002)

The Evidence Against Sterile Neutrinos

KARMEN $(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})$

Church et al., Phys.Rev.D66 013001 (2002)

Bugey Reactor (\bar{v}_e Disappearance)

Achkar et al., Nucl. Phys. B434, 503 (1995)

v_{μ} Disappearance (where is it?)

Kopp et al., JHEP 1305, 050 (2013)

MiniBooNE ($\nu_{\mu} \rightarrow \nu_{e}$) 2007

Aguilar-Arevalo et al., Phys.Rev.Lett. 98, 231801 (2007)

The Evidence Against Sterile Neutrinos

KARMEN $(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})$

Church et al., Phys.Rev.D66 013001 (2002)

Bugey Reactor (\bar{v}_e Disappearance)

Achkar et al., Nucl. Phys. B434, 503 (1995)

v_{μ} Disappearance (where is it?)

Kopp et al., JHEP 1305, 050 (2013)

MiniBooNE ($\nu_{\mu} \rightarrow \nu_{e}$) 2013

Aguilar-Arevalo et al., Phys.Rev.Lett. 110, 161801 (2013)

What Might We Know by Snowmass 2023?

SNOWMASS CSS EBLUE RIDGE

JULY 26 – AUGUST 2, 2023

ORGANIZED BY THE DIVISION OF PARTICLILES AND FIELDS OF

STUDY GROUPS

Energy Frontier

Luis Alvarez (UC Berkeley)

Henry Kendall (MIT) Intensity Frontier

Fred Reines (UC Irvine)

Melvin Schwartz (BNL) Cosmic Frontier

Raymond Davis (U Penn)

Hans Bethe (Cornell) Instrumentation Frontier

imon van der Meer (CER

Georges Charpak (

Richard Feynman (CalTech)

cation and Outreach

Emilio Segre (UC Berekeley) Maria Goeppert-Mayer (UCSD)

Julian Schwinger (UCLA)

LOCAL ORGANIZIN COMMITTEE

Donald Duck(University of Virginia)

Daisy Duck (Virginia Tech)
Huey Duck (University of North Carolina)
Dewey Duck (Virginia Tech)
Louie Duck (Virginia Tech)

Minnie Mouse (William and Mary)

Mickey Mouse (Virginia Tech, Chair)

Captain Hook (Virginia Tech) Wendy Darling (Duke)

Pinocchio (University of Virginia)

Seppetto (University of Tennessee) Cheshire Cat (North Carolina State

WirginiaTech.

DPF EXECUTIVE

COMMITTEE

Chair: Albert Einstein

Chair-Elect: Marie Curie

Vice Chair: Max Planck

Past Chair: Niels Bohr

Members at Large:

Secretary/Treasurer: Paul Dirac

Councilor: Werner Heisenberg

WWW.SNOWMASS2023.ORG

What Might We Know by Snowmass 2023?

Imagine what we may know just before the turn-on of LBNE in 2023:

- The mass hierarchy from the combination of Pingu, Juno and Nova
- Majorana vs. Dirac if the hierarchy is inverted
- The absolute mass scale from Katrin or $0v2\beta$ if the masses are degenerate
- Hints of δ_{CP} and the θ_{23} look at this cool plot from T2K:

But we still may not have a resolution of the LSND anomaly.

Several Ideas to Search for Sterile Neutrinos

Some have neat signatures and good discovery potential, but most will not be definitive

Ideas for Appearance Searches

Appearance searches are almost exclusively accelerator based.

LAr1 and ICARUS/NESSiE are both π decay-in-flight beams (so called super beams).

OscSNS is a π decay-at-rest beams and therefore makes a direct test of LSND.

Ideas for Appearance Searches

Appearance searches are almost exclusively accelerator based.

LAr1 and ICARUS/NESSiE are both π decay-in-flight beams (so called super beams).

OscSNS is a π decay-at-rest beams and therefore makes a direct test of LSND.

nuSTORM's primary channel is $v_e \rightarrow v_{\mu}$, the CPT conjugate to LSND (or $\bar{v}_e \rightarrow \bar{v}_{\mu}$ if μ^- are stored)

It has the best reach in $\sin^2 2\theta$ over the interesting Δm^2 region.

v_e are Bad News

Super beam ν_e appearance experiments are very difficult. You've got an ambiguous event signature and beam intrinsic ν_e

The MiniBooNE Proposal

What About the T2K

T2K demonstrated that a superbeam v_e appearance experiment can be made to work when the mixing angle is of order 10%.

Observed 28 events over an anticipated background of 4.46±0.53

For a mixing angle of 1% for an expected S/N = 0.5

The $v_{\mu} \rightarrow v_{e}$ allowed region from global fits extends below 0.4% for $S/N < 0.2 \ (\approx \sigma_{BG})$.

So T2K: great success, but not a demonstration of feasibility for short-baseline v_e appearance searches.

The $\nu_e \rightarrow \nu_\mu$ Golden Mode Channel

In nuSTORM, $v_e \rightarrow v_\mu$ can be cleanly identified by looking at the charge of the produced muon.

There is no source of intrinsic, wrong-sign muons.

The muon signature in the detector is unique.

6 Oscillation Channels Available to nuSTORM

In addition to the ν_{μ} and $\bar{\nu}_{\mu}$ appearance channels, the clean, well-characterized beams of nuSTORM can do:

- ν_{μ} and $\bar{\nu}_{\mu}$ disappearance
- v_e and \bar{v}_e disappearance

Winter, Phys.Rev.D85, 113005 (2012)

Final Thoughts

As a machine for short-baseline oscillations, nuSTORM is unique:

- 1. It produces clean, well-understood beams of v_e and \bar{v}_{μ} .
- 2. The signature of the golden mode oscillation channel, $v_e \rightarrow v_u$, is hard to fake in the detector.
- 3. In addition to v_{μ} appearance, v_{μ} and v_{e} disappearance channels are accessible (in both neutrinos and antineutrinos).
- 4. nuSTORM is the next step on a path to a full neutrino factory and a muon collider.