Sterile Neutrino Global Context and nuSTORM Short-Baseline Sensitivity

Jonathan Link
Center for Neutrino Physics
Virginia Tech

Informational Meeting
Snowmass, July 3, 2013
The Evidence for Sterile Neutrinos

LSND ($\bar{\nu}_\mu \rightarrow \bar{\nu}_e$)

- Event Excess: $32.2 \pm 9.4 \pm 2.3$

MiniBooNE ($\bar{\nu}_\mu \rightarrow \bar{\nu}_e$)

- Event Excess: 78.4 ± 28.5

Gallium Anomaly (ν_e Disappearance)

Reactor Anomaly ($\bar{\nu}_e$ Disappearance)

Evidence from Cosmology

Cosmological data like CMB, Baryon Acoustic Oscillations (BAO), Large Scale Structure, Big-Bang Nucleosynthesis and the Hubble Constant (H_0) are sensitive to the effective number of light degrees of freedom (N_{eff})

With 3 ν, $N_{\text{eff}} = 3.046$

$N_{\text{eff}} = 3.36^{+0.68}_{-0.64}$ (95%; Planck+WP+highL).

$N_{\text{eff}} = 3.30^{+0.54}_{-0.51}$ (95%; Planck+WP+highL+BAO).

$N_{\text{eff}} = 3.62^{+0.50}_{-0.48}$ (95%; Planck+WP+highL+H_0).

$N_{\text{eff}} = 3.52^{+0.48}_{-0.45}$ (95%; Planck+WP+highL+H_0+BAO).

$N_{\text{eff}} > 3.046$ may be evidence of a one or more sterile neutrino states

The Evidence Against Sterile Neutrinos

KARMEN ($\bar{\nu}_\mu \rightarrow \bar{\nu}_e$)

The Evidence Against Sterile Neutrinos

KARMEN ($\bar{\nu}_\mu \to \bar{\nu}_e$)

Joint LSND & KARMEN analysis

No $\bar{\nu}_e$ Excess

Bugey Reactor ($\bar{\nu}_e$ Disappearance)

Effective $\bar{\nu}_\mu \to \bar{\nu}_e$ under certain assumptions

ν_μ Disappearance (where is it?)

Joint LSND & KARMEN analysis

No ν_μ Excess

Kopp et al., JHEP 1305, 050 (2013)

MiniBooNE ($\nu_\mu \to \nu_e$) 2007

No Excess Above 475 MeV

The Evidence Against Sterile Neutrinos

KARMEN ($\bar{\nu}_\mu \rightarrow \bar{\nu}_e$)

ν_μ Disappearance (where is it?)

No $\bar{\nu}_e$ Excess

Joint LSND & KARMEN analysis

MiniBooNE ($\nu_\mu \rightarrow \nu_e$) 2013

Bugey Reactor ($\bar{\nu}_e$ Disappearance)

Event Excess: 162.0 ± 47.8

Effective $\bar{\nu}_\mu \rightarrow \bar{\nu}_e$ under certain assumptions

Kopp et al., JHEP 1305, 050 (2013)
STUDY GROUPS

Energy Frontier
- Luis Alvarez (UC Berkeley)
- Henry Kendall (MIT)
- Fred Reines (UC Irvine)
- Melvin Schwartz (BNL)
- Raymond Davis (U Penn)
- Hans Bethe (Cornell)
- Simon van der Meer (CERN)
- Georges Charpak (CERN)
- Richard Feynman (CalTech)
- Eugene Wigner (Princeton)
- Emilio Segre (UC Berkeley)
- Maria Goeppert-Mayer (UCSD)
- Julian Schwinger (UCLA)

Intensity Frontier
- Fred Reines (UC Irvine)
- Melvin Schwartz (BNL)
- Donald Duck (University of Virginia)
- Daisy Duck (Virginia Tech)
- Huey Duck (University of North Carolina)
- Dewey Duck (Virginia Tech)
- Louie Duck (Virginia Tech)
- Minnie Mouse (William and Mary)
- Mickey Mouse (Virginia Tech, Chair)
- Peter Pan (Duke)
- Captain Hook (Virginia Tech)
- Wendy Darling (Duke)
- Pinocchio (University of Virginia)
- Geppetto (University of Tennessee)
- Cheshire Cat (North Carolina State)

Cosmic Frontier
- Raymond Davis (U Penn)
- Hans Bethe (Cornell)
- Simon van der Meer (CERN)
- Georges Charpak (CERN)
- Richard Feynman (CalTech)
- Eugene Wigner (Princeton)
- Emilio Segre (UC Berkeley)
- Maria Goeppert-Mayer (UCSD)
- Julian Schwinger (UCLA)

Instrumentation Frontier
- Simon van der Meer (CERN)
- Georges Charpak (CERN)
- Richard Feynman (CalTech)
- Eugene Wigner (Princeton)
- Emilio Segre (UC Berkeley)
- Maria Goeppert-Mayer (UCSD)
- Julian Schwinger (UCLA)

Computing Frontier
- Richard Feynman (CalTech)
- Eugene Wigner (Princeton)
- Emilio Segre (UC Berkeley)
- Maria Goeppert-Mayer (UCSD)
- Julian Schwinger (UCLA)

LOCAL ORGANIZING COMMITTEE

Donald Duck (University of Virginia)
- Daisy Duck (Virginia Tech)
- Huey Duck (University of North Carolina)
- Dewey Duck (Virginia Tech)
- Louie Duck (Virginia Tech)
- Minnie Mouse (William and Mary)
- Mickey Mouse (Virginia Tech, Chair)
- Peter Pan (Duke)
- Captain Hook (Virginia Tech)
- Wendy Darling (Duke)
- Pinocchio (University of Virginia)
- Geppetto (University of Tennessee)
- Cheshire Cat (North Carolina State)

DPF EXECUTIVE COMMITTEE

Chair: Albert Einstein
- Chair-Elect: Marie Curie
- Vice Chair: Max Planck
- Past Chair: Niels Bohr
- Secretary/Treasurer: Paul Dirac
- Councilor: Werner Heisenberg

Members at Large:
- Enrico Fermi
- Ernest Lawrence
- Wolfgang Pauli
- Max Born
- James Chadwick
- Erwin Schrödinger

WWW.SNOWMASS2023.ORG
Imagine what we may know just before the turn-on of LBNE in 2023:

- The mass hierarchy – from the combination of Pingu, Juno and Nova
- Majorana vs. Dirac – if the hierarchy is inverted
- The absolute mass scale – from Katrin or $0\nu2\beta$ if the masses are degenerate
- Hints of δ_{CP} and the θ_{23} – look at this cool plot from T2K:

But we still may not have a resolution of the LSND anomaly.
Several Ideas to Search for Sterile Neutrinos

Some have neat signatures and good discovery potential, but most will not be definitive

Radioactive Source Experiments

Reactor Short Baseline

\(\nu_e\) Disappearance

\(\bar{\nu}_e\) Disappearance

(Self reported sensitivities)
Appearance searches are almost exclusively accelerator based.

LAr1 and ICARUS/NESSiE are both π decay-in-flight beams (so called super beams).

OscSNS is a π decay-at-rest beams and therefore makes a direct test of LSND.
Ideas for Appearance Searches

Appearance searches are almost exclusively accelerator based.

LAr1 and ICARUS/NESSiE are both π decay-in-flight beams (so called super beams).

OscSNS is a π decay-at-rest beams and therefore makes a direct test of LSND.

nuSTORM’s primary channel is $\nu_e \rightarrow \nu_\mu$, the CPT conjugate to LSND (or $\bar{\nu}_e \rightarrow \bar{\nu}_\mu$ if μ^- are stored)

It has the best reach in $\sin^22\theta$ over the interesting Δm^2 region.
νₑ are Bad News

Super beam νₑ appearance experiments are very difficult. You’ve got an ambiguous event signature and beam intrinsic νₑ.
T2K demonstrated that a superbeam ν_e appearance experiment can be made to work when the mixing angle is of order 10%.

For a mixing angle of 1% for an expected $S/N = 0.5$

The $\nu_\mu \to \nu_e$ allowed region from global fits extends below 0.4% for $S/N < 0.2 \ (\approx \sigma_{BG})$.

So T2K: great success, but not a demonstration of feasibility for short-baseline ν_e appearance searches.

Observed 28 events over an anticipated background of 4.46 ± 0.53
In nuSTORM, $\nu_e \rightarrow \nu_\mu$ can be cleanly identified by looking at the charge of the produced muon. There is no source of intrinsic, wrong-sign muons. The muon signature in the detector is unique.
In addition to the ν_μ and $\bar{\nu}_\mu$ appearance channels, the clean, well-characterized beams of nuSTORM can do:

- ν_μ and $\bar{\nu}_\mu$ disappearance
- ν_e and $\bar{\nu}_e$ disappearance

As a machine for short-baseline oscillations, nuSTORM is unique:

1. It produces clean, well-understood beams of ν_e and $\bar{\nu}_\mu$.

2. The signature of the golden mode oscillation channel, $\nu_e \rightarrow \nu_\mu$, is hard to fake in the detector.

3. In addition to ν_μ appearance, ν_μ and ν_e disappearance channels are accessible (in both neutrinos and antineutrinos).

4. nuSTORM is the next step on a path to a full neutrino factory and a muon collider.