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Outline	

•  Overview of jet reconstruction and calibration at 
ATLAS 
o  Signal formation and pileup noise  

•  Pileup subtraction 
o  Effect of pileup noise 

•  Jet energy scale and resolution 
o  Noise term 

•  Pileup jets 
•  Jet substructure 
•  Missing ET 
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Jet performance studies require a complete calibration chain:  
    noise thresholds, LCW, pileup subtraction, and energy scale 

inputs 



Topological  clusters	
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•  Follow shower development 
•  Electronic + pileup noise suppression 
•  EM/HAD local calibration to correct 

for calorimeter non-compensation, 
energy losses in dead material, and 
out-of-cluster energy 
o  Derived from single pion simulation 

μ=140 μ=40 



High  luminosity  scan	
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•  Production of dedicated 
datasets at several mu 
and pileup noise values 
(sigma) 
o  Optimized calorimeter 

signal reconstruction 
•  From single pion Monte 

Carlo at each sigma value 
o  Jet energy scale for all 

configurations 

•  Calorimeter-only 
simulation: 
o  No tracks available in this 

analysis 
o  Focus on optimization of 

calorimeter level 
reconstruction 

o  Room for improvements 
utilizing tracks 
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Challenges  of  pileup  	
Pileup is one of the main challenges 
for jets and missing ET at the LHC: 
•  Additional energy (offset)  
•  Pileup fluctuations:  

o  increase the noise term of the jet energy 
resolution (event-by-event fluctuations) 

o  additional fake jets (local fluctuations) 

Jet resolution 

Fake  
(pileup) 
jets 



Pileup  subtraction  (2012)	
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•  Estimate, event-by-event, the pileup pT density 
o  Based on energy depositions outside hard jets 

•  Subtract pileup contribution based on jet area 
o  Accounts for global pileup fluctuations from one event to another 
o  Global pileup estimate, not sensitive to local fluctuations  
o  Residual correction to account for higher occupancy inside jets and   

out-of-time pileup effects 

  	
	  	
	

arXiv:0707.1378 [hep-ph] Jet energy resolution improvement 
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Improvement 

Effect of out-of-time pileup 

Pileup  subtraction  (2012)	

In-time pileup 

•  <mu> is the average luminosity per luminosity block 
•  sensitive to out-of-time pileup for fixed NPV 
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Pileup  suppression  (2012)	
•  Pileup local fluctuations within a same event can 

lead to (fake) pileup jets: 
•  Mix of QCD jets from additional interactions and 

random combination of particles from pileup 
interactions 

•  Jet vertex fraction algorithm  
o  Reject fake pile-up jets using tracking and vertexing 

information 
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Jet Vertex Fraction (JVF) 



Pileup  subtraction  (HL)	
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•  Significant increase on the width of the rho distribution with pileup: 
o  Larger pile-up fluctuations 

•  Linear behavior of rho up to high mu for fixed pileup noise values  
•  Higher pileup noise values lead to partial suppression of pile-up: 

o  Larger suppression of pileup activity by pileup noise (sigma) 



Pileup  subtraction  (HL)	
•  Residual offset after subtraction is mostly pileup 

independent  
•  Jet areas subtraction, topo-clustering, and local cluster 

weighting work well at high luminosity 
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In-time residual offset: 
~50-100 MeV/vertex 

out-of-time residual offset 
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Jet  energy  scale	
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•  Pile-up subtraction restores the jet response to that of the jets with 
mu=0  

•  Jet energy scale restores the response to unity 
•  Jet calibration scheme works well up to very high luminosity 



Jet  energy  resolution	

•  Fractional jet energy resolution degrades at low pT due to increased 
(pileup) noise term:  
o  Local pileup fluctuations within events, not captured by the global event-by-event 

median pT density (rho) used in the calibration 

•  Noise term increases as sqrt(mu) 
o  Linear behavior of topo-clustering, pileup subtraction, and jet calibration up to very 

high luminosity 

•  Expect improvements using tracks  
o  Reduce local pileup fluctuations  13 
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Pileup jet 
multiplicity 
(mu=140) 

Pileup  jets	

•  Pileup subtraction 
significantly reduces the 
mean number of pileup 
jets per event 
o  About 3 (0.5) pileup jets 

with pT>20 (40) GeV per 
event at NPV = 140 

 

•  Further improvements 
expected using tracking 
and vertexing information 
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Pileup  
subtraction 
Njets>40GeV 



Jet  substructure	
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•  Key technique for reconstruction 
of boosted objects 

•  Grooming algorithms significantly 
reduce sensitivity to pileup 
(reduced jet area) 
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•  Trimming with 2012 parameter optimization works at mu=140 
•  Degradation in resolution, but lots of room for improvements 
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Jet  grooming  performance	
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4-vector 
subtraction 

Sigma noise trimming 

4-vector 
subtraction 

•  Raising pileup noise values reduces the mean mass, but does not affect the 
dependence on pileup 

•  4-vector subtraction successfully suppresses pileup, even without grooming 
•  Trimming with subtraction further reduces pileup contributions to the jet mass 
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Missing  ET	
•  Missing ET is computed only using topological clusters and calibrated jets 
•  Linearity of the response is within 1% up to mu=140 

o  Achieve a correct missing ET scale 
o  Positive bias at low missing ET is due to the finite resolution of the missing ET, and is 

highly dependent on the event topology 

•  Missing ET resolution scaling with the number of vertices is independently of 
<mu>, when the optimal pileup noise values are used 
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Missing  ET	
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•  Missing ET resolution shifts upwards with pileup, but it does not change 
the slope with mu 
o  Pileup affects the s-term of the resolution, but the k-term remains 

approximately constant 
o  Large room for improvements using tracks to suppress pileup 



Conclusions	
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•  ATLAS techniques for jet, jet substructure and missing ET 
reconstruction and calibration work well up to very high 
luminosities 
o  Topological clustering and local hadron calibration 
o  Pileup suppression 
o  Grooming 
o  Optimization of topological clustering pileup noise significantly 

reduces the impact of pileup at high luminosity, and event-by-
event subtraction allows to maintain the same pileup offset than 
in Run 1 conditions 

 

•  Resolution is degraded in some cases, but there is 
significant room for improvements: 
o  Use of tracks and vertices  

•  Reduce local pileup fluctuations and further suppress pileup jets 
o  Track-cluster matching, charged hadron subtraction, improved 

JVF, forward tracking, topo-clustering, …) 
o  Advanced subtraction techniques using more local information 
o  Optimization of grooming parameters at high luminosity 



Backup  slides	
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Jet  response	

Very small small effect of  
sigma noise on signal  



Pileup jet 
multiplicity 
(mu=140) 

Pileup  jets	

•  Pileup subtraction 
significantly reduces the 
mean number of pileup 
jets per event 
o  About 3 (0.5) pileup jets 

with pT>20 (40) GeV per 
event at NPV = 140 

 

•  Further improvements 
expected using tracking 
and vertexing information 
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Pileup subtraction 
Njets>20GeV 

Pileup subtraction 
Njets>40GeV 



Experimental  issues	
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•  Noise thresholds 
(topoclusters) have a 
different effect inside and 
outside the core of jets 
(pileup particles outside jets 
are more suppressed than 
inside jets, where signals are 
more likely to be above 
threshold) 

•  Coarser calorimeter 
granularity above|eta|>2: 
o  Few clusters from pileup 

(noise) only above 
threshold 

o  Need to restrict the 
calculation of rho to the 
central eta region 

o  Leads to a reduction in the 
power of the jet areas 
technique to correct for 
pile-up effects in the 
forward region 



25 

Jet  energy  resolution	
•  Jet resolution is described by three parameters: noise (N), stochastic 

(S) and constant (C) terms. 
•  Pile-up determines the noise term: 1/pT dependence in the fractional 

resolution means a constant (pt-independent) smearing of the 
absolute pT from pile-up (noise) fluctuations 
o  Constant term is not affected by pile-up 
o  Noise term determines the jet resolution at low pT 
o  The key to improve jet energy at low pT is to reduce the pile-up fluctuations! 
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Out-‐‑of-‐‑time  pileup	
•  ATLAS LAr calorimeter has a large integration time relative 

to bunch spacing: 
o  Out-of-time pile-up contributions 
o  bi-polar shape compensates, on average, for both in-time and out-of-

time pile-up, but out-of-time effects vary significantly within sub-detectors 
(eta-dependence)  

o  ATLAS needs both in-time and out-of-time pile-up corrections 

•  CMS is mostly insensitive to out-of-time pile-up: 
o  2 time-slices (TS) for integration 
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CMS 
ATLAS 


