Status of Production Target simulations for Mu2e II

Vitaly Pronskikh, Douglas Glenzinski, Kyle Knopfel, Nikolai Mokhov, Robert Tschirhart

Fermi National Accelerator Laboratory

Snowmass 2013 (remotely)
DPA and power density as functions of beam energy and HRS material
Muon yield as a function of beam energy
Figure of merit (muon yield per radiation damage)
• Damage at 3 GeV beam energy is worst but overall variation is 50%.
• Tungsten is almost a factor of 3 better than bronze.
• Minimum is at 0.5 - 1 GeV.
• At 100 kW the peak DPA is a factor of 4 higher than the requirement.
\(\pi^- \) and \(\mu^- \) yields at constant beam intensity

- Constant beam intensity (not power) = \(6 \cdot 10^{12} \text{ p/s} \).
- Yields per damage unit drop with beam energy.
- Highest rise in \(\mu^- \) yields is between 0.5 and 2 GeV.
inner bore shape may affect muon yield

decrease from 25 to 20 cm was estimated to reduce μ-yield by $\approx 8\%$.

DPA drops in the tungsten absorber at 1 GeV protons (W target) by a factor of ≈ 4 each ≈ 9 cm of thickness
HRS thickness can be increased

Mu2e-DocDB-3165, K. Lynch and J. Popp

- Muon yields with liner radius

- inner bore 20 cm
- no yield drop down to \(\approx 17 \) cm
- Beam energy 1 GeV, carbon target.
- Radiation quantities drop with the same rate as w/W target.
- Required a 90 cm HRS radius.
G4beamline acceptance functions were used with MARS15 for both μ^- and π^-.

π^-/μ^- ratios are different for MARS15 and G4beamline (GEANT4).

At some point yields need to be compared (uncertainty).
Conclusions

- Optimal μ^- stopping rate is at 2 - 3 GeV proton beam.
- Optimal μ^- stopping rate per DPA is at 1 GeV.
- Highest radiation damage is at 3 GeV (at constant beam power).
- Radiation damage varies between 1 and 8 GeV by \sim50%.
- For tungsten absorber at 100 kW:
 - peak DPA is $1.6 \cdot 10^{-4}$ (limit $4 \cdot 10^{-5}$ yr$^{-1}$),
 - peak power density is $4.2 \cdot 10^{-2}$ (limit $3 \cdot 10^{-2}$ mW/g).
- Decreasing the HRS inner bore can mitigate much of the difference.
- Tungsten target requires less shielding than carbon.
- More optimization work is needed taking the muon yield into account.
- On-line RRR monitoring during Mu2e I run will help setting limits.