Status of Production Target simulations for Mu2e II

Vitaly Pronskikh, Douglas Glenzinski, Kyle Knopfel, Nikolai Mokhov, Robert Tschirhart

Fermi National Accelerator Laboratory

Snowmass 2013 (remotely)

(中) (문) (문) (문) (문) (문)

990

Production Target simulations for Mu2e II

- DPA and power density as functions of beam energy and HRS material
- Muon yield as a function of beam energy
- Figure of merit (muon yield per radiation damage)

V.S. Pronskikh et al.

Status of Production Target simulations for Mu2e II

- Damage at 3 GeV beam energy is worst but overall variation is 50%.
- Tungsten is almost a factor of 3 better than bronze.
- Minimum is at 0.5 1 GeV.
- At 100 kW the peak DPA is a factor of 4 higher than the requirement.

V.S. Pronskikh et al.

Status of Production Target simulations for Mu2e II

- Constant beam intensity (not power) = $6 \cdot 10^{12}$ p/s.
- Yields per damage unit drop with beam energy.
- Highest rise in μ^- yields is between 0.5 and 2 GeV.

V.S. Pronskikh et al.

DPA vs thickness for CDR HRS design

- inner bore shape may affect muon yield
- decrease from 25 to 20 cm was estimated to reduce $\mu\text{-yield}$ by \approx 8%.
- DPA drops in the tungsten absorber at 1 GeV protons (W target) by a factor of ≈4 each ≈9 cm of thickness

V.S. Pronskikh et al.

Status of Production Target simulations for Mu2e II

HRS thickness ca be increased

Status of Production Target simulations for Mu2e II

Carbon target model at 0.3 and 1 MW

- Beam energy 1 GeV, carbon target.
- Radiation quantities drop with the same rate as w/W target.
- Required a 90 cm HRS radius.

V.S. Pronskikh et al.

Figure of merit and stopped muon yield

- G4beamline acceptance functions were used with MARS15 for both μ^- and $\pi^-.$
- π^-/μ^- ratios are different for MARS15 and G4beamline (GEANT4).
- At some point yields need to be compared (uncertainty).

V.S. Pronskikh et al.

Status of Production Target simulations for Mu2e II

Conclusions

- \bullet Optimal μ^- stopping rate is at 2 3 GeV proton beam.
- Optimal μ^- stopping rate per DPA is at 1 GeV.
- Highest radiation damage is at 3 GeV (at constant beam power).
- Radiation damage varies between 1 and 8 GeV by ${\sim}50\%.$
- For tungsten absorber at 100 kW :
 - peak DPA is $1.6 \cdot 10^{-4}$ (limit $4 \cdot 10^{-5} yr^{-1}$),
 - peak power density is $4.2\cdot 10^{-2}$ (limit $3\cdot 10^{-2}$ mW/g).
- Decreasing the HRS inner bore can mitigate much of the difference.
- Tungsten target requires less shielding than carbon.
- More optimization work is needed taking the muon yield into account.
- On-line RRR monitoring during Mu2e I run will help setting limits.

V.S. Pronskikh et al.