

Inclusive B Decays

Gil Paz

Department of Physics and Astronomy, Wayne State University

Outline

Introduction

- Semileptonic: $\bar{B} \to X_c \, \ell \, \bar{\nu}$ and $|V_{cb}|$
- Semileptonic: $\bar{B} \to X_u \, \ell \, \bar{\nu}$ and $|V_{ub}|$
- Radiative: $\bar{B} \rightarrow X_s \gamma$
- Radiative: $\bar{B} \to X_s \, \ell^+ \ell^-$ (Backup Slides)
- Conclusions and outlook

Introduction

Motivation

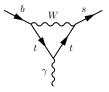
- Why study inclusive B decays?
- Determination of fundamental parameters
- Important probe of new physics
- Theoretically clean
- Theoretically interesting
- Large impact

Determination of fundamental parameters

- Inclusive semileptonic B decays
- \Rightarrow precision determination of $|V_{cb}| \& |V_{ub}|$
 - PDG 2012: Inclusive $|V_{cb}| = 41.9 \pm 0.7 \times 10^{-3}$ (exclusive $|V_{cb}| = 39.6 \pm 0.9 \times 10^{-3}$) Inclusive $|V_{ub}| = 4.41 \pm 0.23 \times 10^{-3}$ (exclusive $|V_{ub}| = 3.23 \pm 0.31 \times 10^{-3}$)
 - Unresolved tension for $|V_{cb}| \& |V_{ub}|$: Inclusive > Exclusive

Important probe of new physics

• $b \rightarrow s\gamma$ is a flavor changing neutral current (FCNC) In SM no FCNC at tree level, arises as a loop effect:



• $b \rightarrow s\gamma$ can have contribution from new physics e.g. SUSY (only one diagram shown):

• Inclusive radiative B decays constrain many models of new physics

Theoretically Clean

Since $5 \,\mathrm{GeV} \sim m_b \gg \Lambda_{\mathrm{QCD}} \sim 0.5 \,\mathrm{GeV}$

Observables expanded as a power series in $\Lambda_{
m QCD}/m_b\sim 0.1$

$$d\Gamma = \sum_{n} c_{n} \frac{\langle O_{n} \rangle}{m_{b}^{n}}$$

 c_n perturbative, $\langle O_n \rangle$ non-perturbative

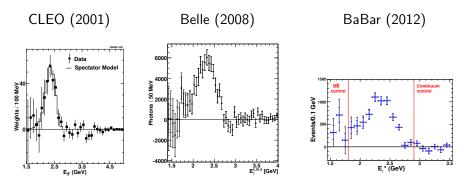
- Improvable:
- Calculate c_n to higher order in α_s
- Expand to higher orders in $\Lambda_{\rm QCD}/m_b$

Theoretically Interesting

- Theoretically Interesting: test of basic QFT tools
- Factorization theorems
- Operator product expansion

Theoretically Interesting

- Theoretically Interesting: test of basic QFT tools
- Factorization theorems
- Operator product expansion
- Theoretically Interesting: window to non-perturbative physics



At leading twist the photon spectrum is the B-meson pdf

Large Impact

- CLEO top cited papers: $\#1~(b \rightarrow s\gamma ~'95)$
- Belle top cited papers: #3 ($b \rightarrow s\gamma$ '01)
- BaBar top cited papers: #18 ($b \rightarrow s \ell^+ \ell^-$ '04)
- Theoretical predictions: hundreds of citations

Take home message

• 1990's -2000's: Next to Leading Order (NLO) Era:

 c_0 at $\mathcal{O}(\alpha_s)$ + first power corrections at $\mathcal{O}(\alpha_s^0)$

• 2010's: Next to Next to Leading Order (NNLO) Era

 c_0 at $\mathcal{O}(\alpha_s^2)$ + first power corrections at $\mathcal{O}(\alpha_s)$ + ...

New level of precision!

Questions

- What is the current status of the theory of Inclusive B decays?
- What theory advances can we expect in the near future?
- What measurements will be useful?

$\bar{B} \rightarrow X_c \, \ell \, \bar{\nu}$ and $|V_{cb}|$

$\bar{B} \to X_c \, \ell \, \bar{\nu}$

- At the quark level the process $\bar{B} o X_c \, I \, \bar{
 u}$ is $b o c \, I \, \bar{
 u}$
- Simplest approximation: free quark decay

$$d\Gamma(\bar{B} \to X_c \, I \, \bar{\nu}) \approx d\Gamma(b \to c \, I \, \bar{\nu})$$

• "Muon Decay"

$$\Gamma = rac{G_F^2 |V_{cb}|^2 m_b^5}{192 \pi^3}$$

• How good is this approximation? What are the corrections?

$\bar{B} \to X_c \,\ell \,\bar{\nu}$

• Answer: free quark is the zeroth term in a series Operator Product Expansion for $\bar{B} \rightarrow X_c \, l \, \bar{\nu}$

$$d\Gamma = \sum_{n} c_{n} \frac{\langle O_{n} \rangle}{m_{b}^{n}}$$

- c_n can be calculated in perturbation theory in α_s
- $\langle O_n \rangle$ are *local* operators, non-perturbative input

$\bar{B} \to X_c \,\ell \,\bar{\nu}$

• Answer: free quark is the zeroth term in a series Operator Product Expansion for $\bar{B} \rightarrow X_c \, l \, \bar{\nu}$

$$d\Gamma = \sum_{n} c_{n} \frac{\langle O_{n} \rangle}{m_{b}^{n}}$$

- c_n can be calculated in perturbation theory in α_s
- $\langle O_n \rangle$ are *local* operators, non-perturbative input
- No $1/m_b$ corrections, at order $1/m_b^2$ two operators
- Kinetic: $\langle O_2^K
 angle = \langle ar{B} | ar{b} (iD)^2 b | ar{B}
 angle$ must be fitted to spectra
- Chromomagnetic: $\langle O_2^G
 angle = \langle \bar{B} | \bar{b} \, \sigma_{\mu\nu} G^{\mu\nu} \, b | \bar{B}
 angle$ related to $M_B M_{B^*}$

$\bar{B} \to X_c \, \ell \, \bar{\nu}$: Present

- Currently *implemented* calculations by two theory groups: "Kinetic" scheme and "1S" scheme
- c_0 calculated at $\mathcal{O}(\alpha_s)$

[Trott '04; Aquila, Gambino, Ridolfi, Uraltsev '05]

 - c₂^K, c₂^G calculated at O(α_s⁰) [Blok, Koyrakh, Shifman, Vainshtein '93; Manohar, Wise '93]
 - c₃^j with j = 1,2 calculated at O(α_s⁰)

[Gremm, Kapustin '96]

$\bar{B} \to X_c \, \ell \, \bar{\nu}$: Present

- Currently *implemented* calculations by two theory groups: "Kinetic" scheme and "1S" scheme
- c_0 calculated at $\mathcal{O}(\alpha_s)$

[Trott '04; Aquila, Gambino, Ridolfi, Uraltsev '05]

- c_2^K, c_2^G calculated at $\mathcal{O}(\alpha_s^0)$ [Blok, Koyrakh, Shifman, Vainshtein '93; Manohar, Wise '93]

-
$${\it c}_{
m 3}^{\prime}$$
 with $j=1,2$ calculated at ${\cal O}(lpha_{
m s}^{
m 0})$

[Gremm, Kapustin '96]

- PDG 2012: Extracted inclusive $|V_{cb}|$ using these calculations
- $|V_{cb}| = (41.88 \pm 0.73) \cdot 10^{-3}$ in the kinetic scheme
- $|V_{cb}| = (41.96 \pm 0.45) \cdot 10^{-3}$ in the 1S scheme
- Consistent with each other, marginally consistent with exclusive $|V_{cb}| = (39.6 \pm 0.9) \cdot 10^{-3}$

- Improvable:
- Calculate c_n to higher order in α_s
- Expand to higher orders in $\Lambda_{\rm QCD}/\textit{m}_{b}$

- Improvable:
- Calculate c_n to higher order in α_s
- Expand to higher orders in $\Lambda_{\rm QCD}/\textit{m}_{b}$
- More recently
- c_0 calculated at $\mathcal{O}(\alpha_s^2)$ [Melnikov '08; Pak, Czarnecki '08]
- c_2^{κ} calculated *numerically* at $\mathcal{O}(\alpha_s)$ [Becher, Boos, Lunghi '07]
- c₂^K calculated analytically at O(α_s) [Alberti, Ewerth, Gambino, Nandi, '12]
- c_2^G at $\mathcal{O}(\alpha_s)$ in progress [Alberti, Ewerth, Gambino, Nandi, '##]
- $c_4^j, j = 1...9$ and $c_5^j, j = 1...18$ calculated at $\mathcal{O}(\alpha_s^0)$ [Mannel, Turczyk, Uraltsev '09]
- Of these only c_0 at $\mathcal{O}(\alpha_s^2)$ was implemented [Gambino '11; Gambino, Schwanda '13]

• With the completion of c_2^G at $\mathcal{O}(\alpha_s)$ we will have α_s^2 , $\alpha_s \Lambda_{\rm QCD}^2/m_b^2$, $\Lambda_{\rm QCD}^3/m_b^3$, $\Lambda_{\rm QCD}^4/m_b^4$, and $\Lambda_{\rm QCD}^5/m_b^5$ terms for the theoretical prediction

• With the completion of c_2^G at $\mathcal{O}(\alpha_s)$ we will have α_s^2 , $\alpha_s \Lambda_{\rm QCD}^2/m_b^2$, $\Lambda_{\rm QCD}^3/m_b^3$, $\Lambda_{\rm QCD}^4/m_b^4$, and $\Lambda_{\rm QCD}^5/m_b^5$ terms for the theoretical prediction

• NNLO Era!

Allow for high precision $|V_{cb}|$

$\bar{B} ightarrow X_u \, \ell \, \bar{ u}$ and $|V_{ub}|$

$\bar{B} \to X_u \,\ell \,\bar{\nu}$

• In principle local OPE describes $\bar{B} \to X_u \, \ell \, \bar{\nu}$ observables

Assuming $M_X^2 \sim m_b^2 \Rightarrow$ local OPE

$\bar{B} \to X_u \,\ell \,\bar{\nu}$

• In principle local OPE describes $\bar{B} \to X_u \, \ell \, \bar{\nu}$ observables

Assuming $M_X^2 \sim m_b^2 \Rightarrow$ local OPE

• In practice, to reject $\bar{B} o X_c \, \ell \, \bar{
u}$ background need cuts: $M_X^2 < M_D^2$

$$M_X^2 < M_D^2 \sim m_b \Lambda_{
m QCD} \Rightarrow$$
 non-local OPE

$\bar{B} \to X_u \,\ell \,\bar{\nu}$

• In principle local OPE describes $\bar{B} \to X_u \, \ell \, \bar{\nu}$ observables

Assuming $M_X^2 \sim m_b^2 \Rightarrow$ local OPE

• In practice, to reject $\bar{B} o X_c \, \ell \, \bar{
u}$ background need cuts: $M_X^2 < M_D^2$

$$M_X^2 < M_D^2 \sim m_b \Lambda_{\rm QCD} \Rightarrow$$
 non-local OPE

• Observables described by B meson PDFs: shape functions

$$d\Gamma = \sum_{n} \frac{1}{m_b^n} \sum_{i} \frac{h_i^{(n)}}{i} \cdot j_i^{(n)} \otimes s_i^{(n)}$$

 $h_i^{(n)}, j_i^{(n)}$ perturbative, $s_i^{(n)}$ non-perturbative functions

$\bar{B} \to X_u \,\ell \, \bar{\nu}$: Present

Based on

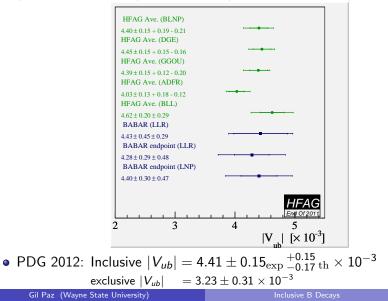
$$d\Gamma \sim H \cdot J \otimes S + \frac{1}{m_b} \sum_i H \cdot J \otimes s_i + ...$$

- Leading power H, J at $\mathcal{O}(\alpha_s)$ [Bauer, Manohar '03; Bosch, Lange, Neubert, GP '04]
- Subleading shape functions: H ⋅ J ⊗ s_i at O(α⁰_s)
 [K. Lee, Stewart '04; Bosch, Neubert, GP '04; Beneke, Campanario, Mannel, Pecjak '04]
- S extracted from $\bar{B}
 ightarrow X_s \gamma$, s_i modeled (\sim 700 models)
- Precision determination of $|V_{ub}|$ ("NLO") Lange, Neubert, GP PRD **72** 073006 (2005) Error on $|V_{ub}|$: **18%** (PDG 2004) \Rightarrow **8%** (PDG 2006)

$\bar{B} \to X_u \,\ell \,\bar{\nu}$: Present

• Consistent extractions based on various theoretical approaches

(Another group, SIMBA (Global fit approach) doesn't have results yet)



$$d\Gamma \sim \frac{H}{M} \cdot J \otimes S + \frac{1}{m_b} \sum_{i} H \cdot J \otimes s_i + \frac{1}{m_b} \sum_{i} H \cdot j_i \otimes S + \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}^2}{m_b^2}\right)$$

- More recently
- J calculated at $\mathcal{O}(\alpha_s^2)$ [Becher, Neubert '06]
- *H* calculated at $\mathcal{O}(\alpha_s^2)$ [Bonciani, Ferroglia '08; Asatrian, Greub, Pecjak '08; Beneke, Huber, Li '08; Bell '08]
- j_i calculated at $\mathcal{O}(\alpha_s)$ [GP '09]
- Calculations not fully combined yet

$$d\Gamma \sim \frac{H}{M} \cdot J \otimes S + \frac{1}{m_b} \sum_{i} H \cdot J \otimes s_i + \frac{1}{m_b} \sum_{i} H \cdot j_i \otimes S + \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}^2}{m_b^2}\right)$$

- More recently
- J calculated at $\mathcal{O}(\alpha_s^2)$ [Becher, Neubert '06]
- *H* calculated at $\mathcal{O}(\alpha_s^2)$ [Bonciani, Ferroglia '08; Asatrian, Greub, Pecjak '08; Beneke, Huber, Li '08; Bell '08]
- j_i calculated at $\mathcal{O}(\alpha_s)$ [GP '09]
- Calculations not fully combined yet
- NNLO Era!

Allow for high precision $|V_{ub}|$

- What if we could relax the cuts? E.g. Belle's $p_{\ell}^{*B} > 1.0 \text{ GeV}$ [Belle, Urquijo et al. '10] Relaxing the cuts makes the measurement more inclusive
- Three options:
- 1) Use the same calculations as the end point region e.g. BLNP smoothly merges to local OPE
- 2) Use local OPE

Recently free quark $d\Gamma(b \rightarrow u \, \ell \, \bar{\nu})$ was calculated at $\mathcal{O}(\alpha_s^2)$ [Burcherseifer, Caola, Melnikov '13]

- 3) Multi Scale OPE [Neubert '05] interpolating between local and non-local OPE
 - My personal preference: try a variety of approaches
 Data with different *cuts* will allow to test these options

 $\bar{B} \to X_s \gamma$

$\bar{B} \rightarrow X_s \gamma$: Present

• Brief discussion, for details

[GP talk at KEK Flavor Factory Workshop (KEK-FF2013)]

- Latest (May 2013) HFAG BR $\Gamma(b o s\gamma) = (3.43 \pm 0.21 \pm 0.07) imes 10^{-4}, \quad E_{\gamma} > 1.6 \text{ GeV}$
- Published value [Misiak et. al. '07] $\Gamma(b \rightarrow s\gamma) = (3.15 \pm 0.23) \times 10^{-4}, \quad E_{\gamma} > 1.6 \text{ GeV}$
- Recent update [Misiak, FPCP 2013] $\Gamma(b \rightarrow s\gamma) = (3.14 \pm 0.22) \times 10^{-4}, \quad E_{\gamma} > 1.6 \text{ GeV}$
- Largest uncertainty: non-perturbative (5%) from $\mathcal{O}\left(\Lambda_{\rm QCD}/m_b
 ight)$

$\bar{B} \rightarrow X_s \gamma$: Present

- Like semileptonic expect non-perturbative effects at $O\left(\Lambda_{\rm QCD}^2/m_b^2\right)$
- Direct $Q_{7\gamma}: b
 ightarrow s\gamma$ is only one possible process

$\bar{B} \rightarrow X_s \gamma$: Present

- Like semileptonic expect non-perturbative effects at $\mathcal{O}\left(\Lambda_{\rm QCD}^2/m_b^2\right)$
- Direct $Q_{7\gamma}: b
 ightarrow s\gamma$ is only one possible process
- "Resolved" (indirect) photon production, e.g
- Q_1 : $b \rightarrow s \bar{q} q \rightarrow s g \gamma$
- $Q_{8g}: b \rightarrow sg \rightarrow s\bar{q}q\gamma$ Lead to $\mathcal{O}(\Lambda_{QCD}/m_b)$ non-perturbative effects [S. Lee, Neubert, GP '06; Benzke, S. Lee, Neubert, GP '10]

 Δ_{0-}

• Hard to estimate the resolved photon contributions

 Δ_{0-}

- Hard to estimate the resolved photon contributions
- The uncertainty due to Q_{8g} can be extracted from data Assuming SU(3) flavor symmetry it is determined by charge (isospin) asymmetry [Misiak '09]

$$\Delta_{0-} = \frac{\Gamma(\bar{B}^0 \to X_s \gamma) - \Gamma(B^- \to X_s \gamma)}{\Gamma(\bar{B}^0 \to X_s \gamma) + \Gamma(B^- \to X_s \gamma)}$$

• Including 30% SU(3) flavor breaking

[Benzke, S. Lee, Neubert, GP '10]

$$Q_{8g} ext{ uncertainty} = -(1\pm 0.3)rac{\Delta_{0-}}{3}$$

 Δ_{0-}

- Hard to estimate the resolved photon contributions
- The uncertainty due to Q_{8g} can be extracted from data Assuming SU(3) flavor symmetry it is determined by charge (isospin) asymmetry [Misiak '09]

$$\Delta_{0-} = \frac{\Gamma(\bar{B}^0 \to X_s \gamma) - \Gamma(B^- \to X_s \gamma)}{\Gamma(\bar{B}^0 \to X_s \gamma) + \Gamma(B^- \to X_s \gamma)}$$

• Including 30% SU(3) flavor breaking

[Benzke, S. Lee, Neubert, GP '10]

$$Q_{8g}$$
 uncertainty = $-(1 \pm 0.3) rac{\Delta_{0-}}{3}$

• So far Δ_{0-} only measured by BaBar, $\Delta_{0-} = (-1.3 \pm 5.9)\%$ Error on $\Gamma(\bar{B} \to X_s \gamma)$ increase/decrease depending on size of Δ_{0-}

CP asymmetry

• Latest (May 2013) HFAG value

$$\mathcal{A}_{X_{s}\gamma} = \frac{\Gamma(\bar{B} \to X_{s}\gamma) - \Gamma(B \to X_{\bar{s}}\gamma)}{\Gamma(\bar{B} \to X_{s}\gamma) + \Gamma(B \to X_{\bar{s}}\gamma)} = -(0.8 \pm 2.9)\%$$

- Perturbative only : $A_{X_s\gamma} \approx 0.5\%$ [Soares '91; Kagan, Neubert '98; Ali et al.; '98; Hurth et al. '05]
- Resolved photons have dramatic effect on $\mathcal{A}_{X_s\gamma}$

CP asymmetry

• Latest (May 2013) HFAG value

$$\mathcal{A}_{X_{s}\gamma} = \frac{\Gamma(\bar{B} \to X_{s}\gamma) - \Gamma(B \to X_{\bar{s}}\gamma)}{\Gamma(\bar{B} \to X_{s}\gamma) + \Gamma(B \to X_{\bar{s}}\gamma)} = -(0.8 \pm 2.9)\%$$

- Perturbative only : $A_{X_s\gamma} \approx 0.5\%$ [Soares '91; Kagan, Neubert '98; Ali et al.; '98; Hurth et al. '05]
- Resolved photons have dramatic effect on $\mathcal{A}_{X_s\gamma}$
- CP asymmetry dominated by non-perturbative effects!

$$-0.6\% < \mathcal{A}_{X_s\gamma}^{\mathrm{SM}} < 2.8\%$$

[Benzke, S. Lee, Neubert, GP, '11]

ΔA_{X_s} : Theory

• New test of physics beyond the SM

$$\Delta \mathcal{A}_{X_s} = \mathcal{A}_{X_s^- \gamma} - \mathcal{A}_{X_s^0 \gamma} \approx 4\pi^2 \alpha_s \frac{\tilde{\Lambda}_{78}}{m_b} \operatorname{Im} \frac{C_{8g}}{C_{7\gamma}} \approx 12\% \times \frac{\tilde{\Lambda}_{78}}{100 \,\mathrm{MeV}} \operatorname{Im} \frac{C_{8g}}{C_{7\gamma}}$$

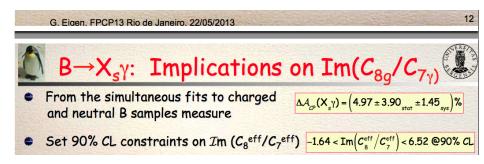
where 17 $MeV < \tilde{\Lambda}_{78} <$ 190 MeV [Benzke, S. Lee, Neubert, GP, '11]

• BaBar ΔA_{X_s} analysis

ΔA_{X_s} : Experiment

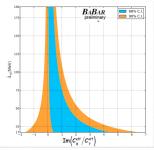
• BaBar talk at FPCP 2013

(Also Piti Ongmongkolkul, Caltech thesis, http://inspirehep.net/record/1243753/files/thesis.pdf)

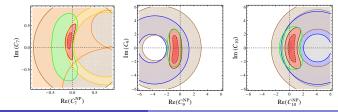


ΔA_{X_s} : Experiment

• First constraint on Im $C_{8g}/C_{7\gamma}$



• Complement similar $b \to s$ constraints on $C_{7\gamma}$, C_9 , and C_{10} [Altmannshofer, Straub '12]



$\bar{B} \rightarrow X_s \gamma$: Future

- Current status for total rate $\Gamma(ar{B} o X_s \gamma)$
- leading power NNLO $\mathcal{O}(\alpha_s^2)$ [Misiak et. al. '07]
- $\Lambda_{
 m QCD}/m_b$ corrections at ${\cal O}(lpha_s^0)$ [Benzke, S. Lee, Neubert, GP '10]
- Some $\Lambda^2_{\rm QCD}/m_b^2$ corrections [Kaminski, Misiak, Poradzinski '12]
- Some $\alpha_s \Lambda_{
 m QCD}^2/m_b^2$ corrections [Ewerth, Gambino, Nandi '10]

$\bar{B} \rightarrow X_s \gamma$: Future

- Current status for total rate $\Gamma(ar{B} o X_s \gamma)$
- leading power NNLO $\mathcal{O}(\alpha_s^2)$ [Misiak et. al. '07]
- $\Lambda_{
 m QCD}/m_b$ corrections at ${\cal O}(lpha_s^0)$ [Benzke, S. Lee, Neubert, GP '10]
- Some $\Lambda^2_{
 m QCD}/m_b^2$ corrections [Kaminski, Misiak, Poradzinski '12]
- Some $\alpha_s \Lambda_{
 m QCD}^2/m_b^2$ corrections [Ewerth, Gambino, Nandi '10]
- Spectrum $d\Gamma(\bar{B} \to X_s \gamma)$:
- Resolved photon effects not known numerically relevant for HQET parameters and $|V_{cb}|$ and $|V_{ub}|$
- Comparison between theory and experiment relays on extrapolation from measured $E_{\gamma} \sim 1.9$ GeV to $E_{\gamma} > 1.6$ GeV The issue of extrapolation should be revisited
- Both can benefit from detailed E_γ cut effects

Conclusions and outlook

Take home message

• 1990's -2000's: Next to Leading Order (NLO) Era:

 c_0 at $\mathcal{O}(\alpha_s)$ + first power corrections at $\mathcal{O}(\alpha_s^0)$

• 2010's: Next to Next to Leading Order (NNLO) Era

 c_0 at $\mathcal{O}(\alpha_s^2)$ + first power corrections at $\mathcal{O}(\alpha_s)$ + ...

New level of precision!

• Reduction of experimental error motivates theoretical advances Currently $\delta\Gamma_{exp} \approx \delta\Gamma_{th}$ for both $\bar{B} \to X_s \gamma$ and $\bar{B} \to X_u \,\ell \,\bar{\nu}$

- Reduction of experimental error motivates theoretical advances Currently $\delta\Gamma_{exp} \approx \delta\Gamma_{th}$ for both $\bar{B} \to X_s \gamma$ and $\bar{B} \to X_u \,\ell \,\bar{\nu}$
- *Cut effects*: dependence of observables on cuts helps improve theoretical predictions (or make them more reliable)

- Reduction of experimental error motivates theoretical advances Currently $\delta\Gamma_{exp} \approx \delta\Gamma_{th}$ for both $\bar{B} \to X_s \gamma$ and $\bar{B} \to X_u \,\ell \,\bar{\nu}$
- *Cut effects*: dependence of observables on cuts helps improve theoretical predictions (or make them more reliable)
- Isospin asymmetries
- Δ_{0-} helps constrain error on $\Gamma(\bar{B} \to X_s \gamma)$ so far only measured by BaBar, $\Delta_{0-} = (-1.3 \pm 5.9)\%$
- ΔA_{X_s} : test of new physics
- so far only measured by BaBar $\Delta {\cal A}_{X_s} = (4.97 \pm 3.90 \pm 1.45)\%$

- Reduction of experimental error motivates theoretical advances Currently $\delta\Gamma_{exp} \approx \delta\Gamma_{th}$ for both $\bar{B} \to X_s \gamma$ and $\bar{B} \to X_u \,\ell \,\bar{\nu}$
- *Cut effects*: dependence of observables on cuts helps improve theoretical predictions (or make them more reliable)
- Isospin asymmetries
- Δ_{0-} helps constrain error on $\Gamma(\bar{B} \to X_s \gamma)$ so far only measured by BaBar, $\Delta_{0-} = (-1.3 \pm 5.9)\%$
- ΔA_{X_s} : test of new physics
- so far only measured by BaBar $\Delta {\cal A}_{X_s} = (4.97 \pm 3.90 \pm 1.45)\%$
- Surprises both from experiment and theory...

Backup Slides

Comments on

 $\bar{B} \to X_s \,\ell^+ \ell^-$

$\bar{B} \to X_s \, \ell^+ \ell^-$

• Region of low $q^2 \in [1...6] \text{ GeV}^2$ and $m_X \leq m_X^{\text{cut}}$ $d\Gamma_i$ factorizes similarly to $d\Gamma_{77}$ of $\bar{B} \to X_s \gamma$

$$d\Gamma_i \sim H_i \cdot J \otimes S + \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}}{m_b}\right), \quad i = T, A, L$$

[K. Lee, Stewart '05]

- Recent progress:
- K. Lee, Tackmann

Calculation of $\mathcal{O}\left(\frac{\Lambda_{\rm QCD}}{m_b}\right)$ "primary" SSF [PRD **79**, 114021 (2009)]

 Bell, Beneke, Huber and Li Two loop calculation of *H_i* [NPB 843, 143 (2011)]

$\bar{B} \to X_s \, \ell^+ \ell^-$: Power Corrections

• [K. Lee, Tackmann, PRD 79, 114021 (2009)]:

Contribution of SSF that appear also in $\bar{B} \rightarrow X_u \, l\bar{\nu}$ ("primary")

- $\bullet\,$ Sizable power corrections of order 5% to 10%
- Cause a shift of $\sim -0.05\,{\rm GeV^2}$ to $-0.1\,{\rm GeV^2}$ in the zero of the forward-backward asymmetry

$\bar{B} \rightarrow X_s \, \ell^+ \ell^-$: Perturbative Corrections

• [Bell, Beneke, Huber, Li, NPB 843, 143 (2011)]

Two loop calculation of H_i

• Shift in zero of the forward-backward asymmetry:

NLO: -2.2% NNLO: -3%

• Final result, including the "primary" $1/m_b$ corrections

$$q_0^2 = (3.34 \dots 3.40)^{+0.22}_{-0.25} \, {\rm GeV}^2 \quad {\rm for} \quad m_X^{\rm cut} = (2.0 \dots 1.8) \, {\rm GeV}$$

$\bar{B} \rightarrow X_s \, \ell^+ \ell^-$: Future Directions

• Following the completed analysis for $\Gamma(\bar{B} \to X_s \gamma)$

What is the effect from "non-primary" SSF?

- For example, soft gluon attachments to the charm-loop diagrams: $\langle \bar{B} | \bar{b}(0) \cdots G(s\bar{n}) \cdots b(0) | \bar{B} \rangle$
- Point also stressed in [Bell, Beneke, Huber, Li, NPB 843, 143 (2011)]