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A Discovery Program of Neutrino Experiments 

Snowmass on the Mississippi, July 31, 2012
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This is not a comprehensive summary. Highlights of opportunities!
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Neutrino sources provide many opportunities
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Neutrino Detectors
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Tools of Discovery - Neutrino Detectors

detectors must match requirements of v sources, leads to 
a broad field with a variety of detectors and techniques

KamLAND
Borexino

MiniBOONE
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νe + 37Cl→ 37Ar + e-
1970 - 1994

standard solar 
model
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Cl-Ar Solar Neutrino Experiment at Homestake

experiment only 
sensitive to νe

The First Anomaly

“deficit” of solar neutrinos
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Discoveries of Neutrino Oscillation

1998 SuperK reports evidence for 
oscillation of atmospheric neutrinos.

2001/2002  SNO finds evidence for 
solar νe flavor change.

2003 KamLAND  discovers 
disappearance of reactor  νe

5

1968  Ray Davis detects 1/3 of 
expected solar neutrinos. 
(Nobel prize in 2002)

2012 Daya Bay, Double Chooz, 
RENO measure θ13

2013 T2K sees νe appearance
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Neutrino Oscillation Implies Neutrino Mass

energy E and baseline L
oscillation frequency Δm2

oscillation amplitude θ
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mass eigenstates ≠ flavor eigenstates

flavor composition of neutrinos changes as 
they propagate 
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Observables in oscillation experiments

Parameterized in a mixing matrix 
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Lots of Experimental Data 

Experiments have demonstrated oscillation L/E pattern

SK MINOS

• atmospheric νμ and νμ disappear most likely to ντ   (SK, MINOS)
• accelerator νμ and νμ disappear at L~250, 700 km   (K2K, T2K, MINOS)
• accelerator νμ appear as νe at L~250, 700 km   (T2K, MINOS)
• solar νe convert to νμ/ντ   (Cl, Ga, SK, SNO, Borexino)
• reactor νe disappear at L~200 km   (KamLAND)
• reactor νe disappear at L~1 km   (DC, Daya Bay RENO)

Neutrino Oscillation Measurements

KamLAND

matter effects can be probed in long-baseline experiments or extreme environments
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atmospheric reactor, accelerator 0νββsolar, reactor
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Maki, Nakagawa, Sakata, Pontecorvo

Mixing Angles
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Neutrino Mixing is Different
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Dominant Important

Gonzalez-Garcia et al,  ICHEP2012

Neutrino Oscillation Measurements

Complete suite of measurements can over-constrain the 3-ν framework 

Experiments provide complementary data
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DYB in ~2014

From Anomalies to Precision Oscillation Physics
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solar neutrino problem

Ga

Cl SK

1960-1990

oscillation searches

1990-2000

precision measurements

>2000
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Anomalies in 3-v interpretation of global oscillation data

new oscillation signal requires Δm2 ~ O(1eV2) and sin22θ > 10-3

LSND    (νe appearance)
MiniBoone    (νe, νe appearance)
Ga anomaly (νe appearance)
Reactor anomaly (νe disappearance) Δm2new ~1 eV2

MiniBooneLSND Ga Source Reactor
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Recent Anomalies 

New physics or experimental artifacts?

Planning experiments with reactors, radioactive sources, and 
accelerators to confirm/refute short-baseline anomalies
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Neutrinos - Open Questions
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• Neutrino have mass, but why are they so light?
• What is the absolute mass scale?
• Do neutrinos have Majorana mass?
• Normal or inverted mass ordering?
• Is θ23 maximal?
• CP violation?
• Are there more than 3ν?

neutrinos charged leptons

energy/mass
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Precision Oscillation Measurements
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Studying neutrino flavor change as a function of distance and energy

LBNE 34kt, 5 yrs, ν

measuring 
appearance and 
disappearance

accelerator-based program 
over short and long 
baselines
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Precision Oscillation Measurements
A staged program of experiments for the next decade

LBNE

MINOS+

NOvA

MicroBoone

Minerva

detectors at various scales
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Precision Oscillation Measurements
A phased development of accelerator capabilities

FNAL accelerator 
upgrades

Daedalus 
Cyclotrons
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Precision Oscillation Measurements
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Searching for CP violation

Determining the mass hierarchy 

alternative approaches to 
mass hierarchy:
reactor experiments at 
~50km baseline; 
atmospheric neutrinos

exposure of order of Mt.MW.yr, very long 
baseline (> 1000 km) and tight control of 
systematics ( < 2% on signal ) is needed to 
reach CKM level precision
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multi-purpose detectors 
when placed in beam

Oscillation Physics with Atmospheric Neutrinos
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Atmospheric neutrinos observable in a large underground detectors are 
sensitive to all currently unknown oscillation parameters

large underground 
detectors enable other 
physics, e.g. proton 
decay searches

Super-K

PINGU/
IceCube

LBNE
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Importance of Mass Hierarchy
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What is the flavor content of the lightest 
neutrino mass state?

Knowing the mass hierarchy will help us 
understand the nature of neutrino mass from 
neutrinoless double beta-decay (0νββ).
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0νββ depends on effective 
neutrino mass
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Majorana or Dirac Neutrino Masses?

19

Neutrinoless double beta decay is the only feasible experimental 
approach to establish Majorana mass of neutrinos

observation of 0νββ would imply
- lepton number non-conservation
- Majorana nature of neutrinos

0νββ allow us to determine
- effective neutrino mass 

Majorana neutrino mass = beyond SM physics

Several technologies feasible. Ready to 
explore the inverted hierarchy region. 
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Absolute Neutrino Mass

20

Precision measurements of beta decay to determine absolute neutrino mass

For m1≿100 meV and no sterile neutrinos, the 
beta spectrum simplifies to an “effective mass”

Smallness of neutrino mass may be related to GUT- or Planck-scale physics.



Snowmass, July 31, 2013 Karsten Heeger, Yale University

Synergies and Applications - Examples

21

Cyclotrons for neutrino physics 
(and industrial applications)

Neutrino detectors for reactor 
monitoring and non-proliferation

remote discovery of undeclared nuclear 
reactors with large detectors at km scale

Daedalus

Watchman

reactor antineutrino studies at short baselines

US Short-Baseline 
Experiment

NIST
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Summary
• Recent discoveries have shown that neutrinos mix and have 

mass. Evidence for new physics.
• A staged program of neutrino oscillation experiments is 

underway to make precision measurements of oscillation 
parameters, test 3-flavor paradigm, and understand neutrino 
interactions.

• Historic anomalies have turned into discoveries of solar and 
atmospheric neutrino oscillations. Neutrinos may continue to 
surprise us! 

• The nature of neutrino mass is not yet understood and may 
hold the clue to physics beyond the Standard Model.

• Synergies with instrumentation and technology developments; 
connections with other frontiers. 

22

This is not a comprehensive summary. Apologies for any omissions. 
Thanks to many colleagues for input, figures, and comments.
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