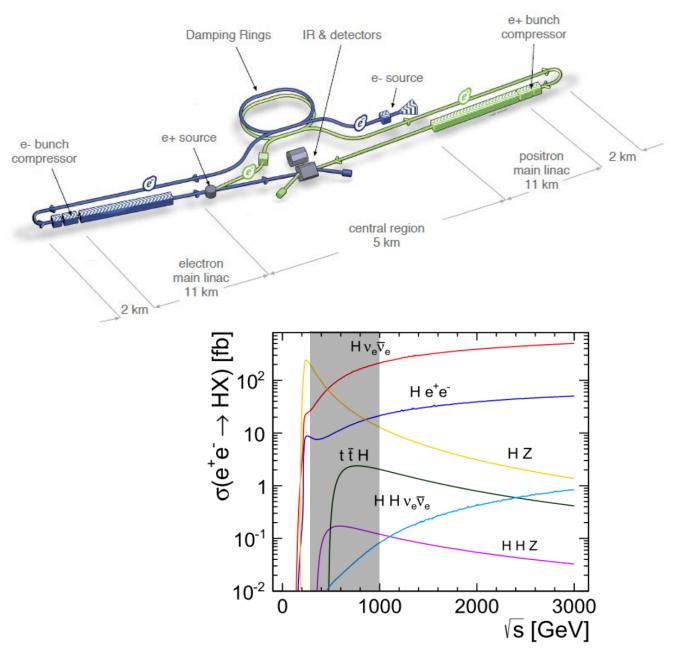
EF5. The message from the LHC seems to be that with data in hand, we consistently outperform expectations for extraction of Higgs properties. In that case, what would an ILC contribute? What key assumptions are we making now that we could relax with ILC inputs?

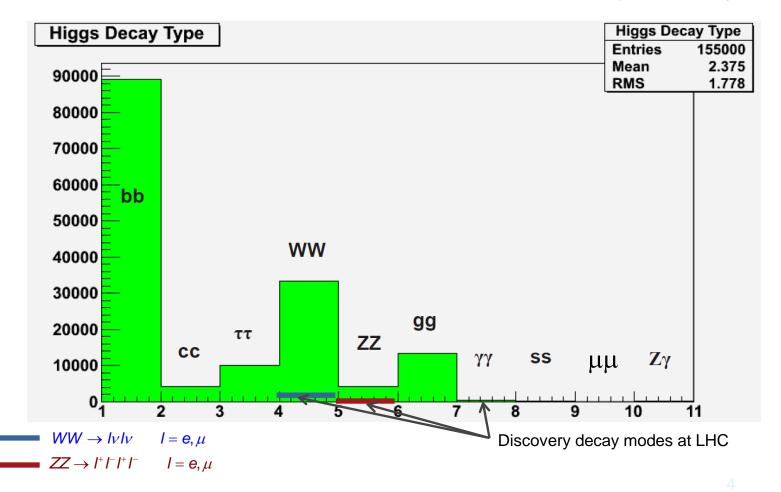

	LIIC	,
Mode	$300 \; {\rm fb^{-1}}$	$3000 \; \mathrm{fb^{-1}}$
$\gamma\gamma$	(5-7)%	(2-5)%
gg	(6-8)%	(3-5)%
WW	(4-5)%	(2-3)%
ZZ	(4-5)%	(2-3)%
t ar t	(14-15)%	(7-10)%
$bar{b}$	(10 - 13)%	(4-7)%
$\tau^+\tau^-$	(6-8)%	(2-5)%

I HC

	LITC	,
Mode	$300 \; {\rm fb^{-1}}$	3000 fb^{-1}
$\mu^{+}\mu^{-}$	30%	10%
hhh	-	50%
BR(invis.)	< (17 – 28)%	< (6-17)%
$c\bar{c}$	-	-
$\Gamma_T(h)$		-

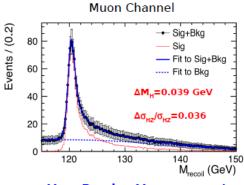
IHC

ILC: e^+e^- Linear Collider at 250 GeV < \sqrt{s} < 1000 GeV

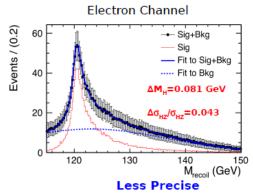

Energy/Lumi Scenarios

- Each scenario corresponds to accumulated luminosity at a certain point in time.
- Assumption: run for 3X10⁷ s at baseline lumi at each of Ecm=250,500,1000 GeV, in that order. Then go back and run for 3X10⁷ s at upgrade lumi at each of Ecm=250,500,1000 GeV.

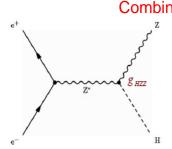
Scenario #	Nickname	Ecm(1)	Lumi(1)	+	Ecm(2)	Lumi(2)	+	Ecm(3)	Lumi(3)
		(GeV)	(fb^{-1})		(GeV)	(fb^{-1})		(GeV)	(fb^{-1})
1	ILC(250)	250	250						
2	ILC(500)	250	250		500	500			
3	ILC(1000)	250	250		500	500		1000	1000
4	ILC(LumUp)	250	1150		500	1600		1000	2500


QUALITATIVE DIFFERENCES BETWEEN ILC & LHC

- All beam crossings are triggered at the ILC
- All background is electroweak.
- Roughly, the detection efficiency is independent of decay mode ⇒ Δ(σ•BR) / σ•BR ∝ 1 / √BR
- LHC Higgs detection efficiency is uneven across decay modes.
- Higgs was discovered in decays modes with γ , e, μ , which have relatively small BR's
- Qualitatively, there is complementarity between the ILC and LHC with respect to decay modes.



QUALITATIVE DIFFERENCES BETWEEN ILC & LHC


- Almost all ILC Higgs measurements are measurements of σ•BR.
- One crucial measurement is different: the Higgs recoil measurement of $\sigma(e^+e^- \to ZH)$.
- $\sigma_{\rm ZH}$ is the key that unlocks the door to model independent measurements of the Higgs BR's and $\Gamma_{\rm tot}$ at the ILC.

Very Precise Measurement S/B = 8 in Peak Region

Bremsstrahlung in detector material

Combined:
$$\Delta M_H = .032 \text{ GeV}$$
, $\Delta \sigma_{HZ} / \sigma_{HZ} = 2.5\% \text{ for L} = 250 \text{ fb}^{-1}$
 $\Delta M_H = .015 \text{ GeV}$, $\Delta \sigma_{HZ} / \sigma_{HZ} = 1.2\% \text{ for L} = 1150 \text{ fb}^{-1}$

$$\sigma_{HZ} \sim g_{HZZ}^2$$

 $\Rightarrow \Delta g_{HZZ} / g_{HZZ} = 1.3\% (0.6\%) \text{ for L=250 (1150) fb}^{-1}$

 All LHC Higgs measurements are measurements of σ•BR

QUALITATIVE DIFFERENCES BETWEEN ILC & LHC

ILC model independent global coupling fit using 32 $\sigma \cdot BR$ measurements Y_i and σ_{ZH} measurement Y_{33}

$$\chi^{2} = \sum_{i=1}^{i=33} \left(\frac{Y_{i} - Y_{i}'}{\Delta Y_{i}}\right)^{2},$$

$$Y_{i}^{'} = F_{i} \cdot \frac{g_{HZZ}^{2}g_{Hb\bar{b}}^{2}}{\Gamma_{0}}$$
, or $Y_{i}^{'} = F_{i} \cdot \frac{g_{HWW}^{2}g_{Hb\bar{b}}^{2}}{\Gamma_{0}}$, or $Y_{i}^{'} = F_{i} \cdot \frac{g_{Htt}^{2}g_{Hb\bar{b}}^{2}}{\Gamma_{0}}$

$$F_i = S_i G_i \quad \text{where } S_i = (\frac{\sigma_{ZH}}{g_Z^2}) \,, \ (\frac{\sigma_{\nu\bar{\nu}H}}{g_W^2}) \,, \ \text{or} \ (\frac{\sigma_{t\bar{t}H}}{g_t^2}) \,, \ \text{and} \ G_i = (\frac{\Gamma_i}{g_i^2}) \,.$$

The cross section calculations S_i do not involve QCD ISR.

The partial width calculations G_i do not require quark masses as input.

We are confident that the total theory errors for S_i and G_i will be at the 0.1% level at the time of ILC running.

THESE AND OTHER QUALITATIVE DIFFERENCES BETWEEN ILC & LHC LEAD TO QUANTITATIVE IMPROVEMENTS OVER LHC

7 Parameter HXSWG Benchmark *

LHC

Mode	300 fb^{-1}	$3000 \; {\rm fb^{-1}}$
$\gamma\gamma$	(5-7)%	(2-5)%
gg	(6-8)%	(3-5)%
WW	(4-5)%	(2-3)%
ZZ	(4-5)%	(2-3)%
$tar{t}$	(14-15)%	(7-10)%
$bar{b}$	(10-13)%	(4-7)%
$ au^+ au^-$	(6-8)%	(2-5)%

ILC(1000)	ILC(LumUp)
3.8 %	2.3 %
1.1 %	0.67 %
0.21 %	0.13 %
0.44 %	0.22 %
1.3 %	0.76 %
0.51 %	0.31 %
1.3 %	0.72 %

* Assume
$$\kappa_c = \kappa_t$$
 & $\Gamma_{tot} = \sum_{\text{SM decays i}} \Gamma_i^{\text{SM}} \kappa_i^2$

Other Higgs Couplings

LHC

Mode	300 fb^{-1}	3000 fb^{-1}
$\mu^{+}\mu^{-}$	30%	10%
hhh	-	50%
BR(invis.)	< (17 – 28)%	< (6-17)%
$c\bar{c}$	-	-
$\Gamma_T(h)$	-	-

ILC(1000)	ILC(LumUp)
16 %	10 %
21 %	13 % *
< 0.69 %	< 0.32 %
2.0 %	1.1 %
5.6 %	2.7 %

^{*} Current full simulation result using $H \to b\overline{b}$, WW * only. Results will improve as more Higgs decay modes are added, and as jet combinatoric problems are solved.

Backup Slides

ILC Accelerator Parameters from TDR

Baseline Luminosity

Upgrade Luminosity

			Baseline 500 GeV Machine		1	lst Stage	L	Upgrade	$E_{ m CM}$ Upgrade		
										Α	В
Centre-of-mass energy	E_{CM}	GeV	250	350	500		250		500	1000	1000
Collision rate	$f_{ m rep}$	Hz	5	5	5		5		5	4	4
Electron linac rate	$f_{ m linac}$	Hz	10	5	5		10		5	4	4
Number of bunches	$n_{ m b}$		1312	1312	1312		1312		2625	2450	2450
Bunch population	N	$ imes 10^{10}$	2.0	2.0	2.0		2.0		2.0	1.74	1.74
Bunch separation	$\Delta t_{ m b}$	ns	554	554	554		554		366	366	366
Pulse current	$I_{ m beam}$	mA	5.8	5.8	5.8		5.8		8.8	7.6	7.6
Main linac average gradient	G_{a}	$ m MV~m^{-1}$	14.7	21.4	31.5		31.5		31.5	38.2	39.2
Average total beam power	$P_{ m beam}$	MW	5.9	7.3	10.5		5.9		21.0	27.2	27.2
Estimated AC power	$P_{ m AC}$	MW	122	121	163		129		204	300	300
RMS bunch length	$\sigma_{ m z}$	mm	0.3	0.3	0.3		0.3		0.3	0.250	0.225
Electron RMS energy spread	$\Delta p/p$	%	0.190	0.158	0.124		0.190		0.124	0.083	0.085
Positron RMS energy spread	$\frac{-r}{\Delta p/p}$	%	0.152	0.100	0.070		0.152		0.070	0.043	0.047
Electron polarisation	$P_{-}^{1/1}$	%	80	80	80		80		80	80	80
Positron polarisation	P_{+}	%	30	30	30		30		30	20	20
Horizontal emittance	$\gamma\epsilon_{ ext{x}}$	μm	10	10	10		10		10	10	10
Vertical emittance	$\gamma \epsilon_{ m y}$	nm	35	35	35		35		35	30	30
Vol. 2. Sun of the Control of the Co							33				
IP horizontal beta function	$eta_{\mathbf{x}}^{m{*}}$	mm	13.0	16.0	11.0		13.0		11.0	22.6	11.0
IP vertical beta function	$eta_{ ext{x}}^* \ eta_{ ext{y}}^*$	mm	0.41	0.34	0.48		0.41		0.48	0.25	0.23
IP RMS horizontal beam size	σ_{x}^{*}	nm	729.0	683.5	474		729		474	481	335
IP RMS veritcal beam size	$\sigma_{ m y}^{ m x}$	nm	7.7	5.9	5.9		7.7		5.9	2.8	2.7
Luminosin	ī	$\times 10^{34} \text{cm}^{-2} \text{s}^{-1}$	0.75	1.0	1.8		0.75		3.6	3.6	4.9
Luminosity	L	× 10° cm -s -			58.3%		0.75 87.1%			59.2%	4.5%
Fraction of luminosity in top 1%	$L_{0.01}/L$		87.1% 0.97%	77.4% 1.9%	4.5%		0.97%		58.3% 4.5%	59.2%	10.5%
Average energy loss Number of pairs per bunch crossing	$\delta_{ ext{BS}}$	$\times 10^3$	62.4	93.6	139.0		62.4		139.0	200.5	382.6
Total pair energy per bunch crossing	$N_{ m pairs}$	TeV	46.5	93.6 115.0	344.1		46.5		344.1	1338.0	3441.0
Total pair energy per bullen crossing	$E_{\rm pairs}$	IEV	40.5	115.0	344.1		40.5		344.1	1330.0	3441.0

Lumi Upgrade at Ecm=250 GeV*

* not in TDR - private communication from Marc Ross and Nick Walker

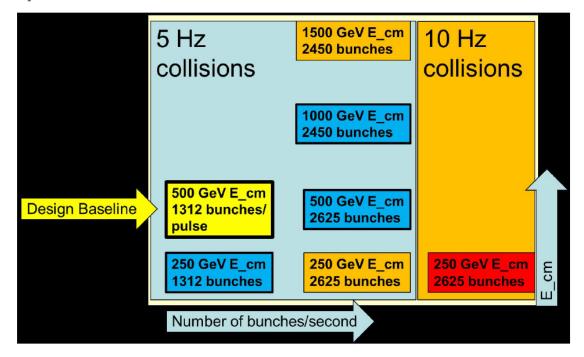


Table 1.2. ILC Higgs factory operational modes

Baseline Luminosity

Upgrade Luminosity

			1st Stag Higgs Fac		High Re Opera	
Centre-of-mass energy	$E_{\rm CM}$	GeV	250	250	250	0
Collision rate Electron linac rate Number of bunches Pulse current	$f_{ m rep} \ f_{ m linac} \ n_{ m b} \ I_{ m beam}$	Hz Hz mA	5 10 1312 5.8	5 10 2625 8.75	10 10 262 8.7	5
Average total beam power Estimated AC power Luminosity	$P_{ m beam}$ $P_{ m AC}$	MW MW $\times 10^{34} \text{cm}^{-2} \text{s}^{-1}$	5.9 129	10.5 160 1.5	21 200 3.0	

Table 5.1. Expected accuracies for cross section and cross section times branching ratio measurements for the $125\,\text{GeV}\ h$ boson assuming you run 3×10^7 s at the baseline differential luminosity for each center of mass energy. For invisible decays of the Higgs, the number quoted is the 95% confidence upper limit on the branching ratio.

\sqrt{s} and ${\cal L}$	$250{\rm fb}^{-1}$ at	250 GeV	$500\mathrm{fb}^{-1}$ at $500\mathrm{GeV}$				$1\mathrm{ab}^{-1}$ at $1\mathrm{TeV}$		
(P_{e^-}, P_{e^+})	(-0.8,+	-0.3)		(-0.8,+0.8)	0.3)		(-0.8, +0.2)		
	Zh	$ u \bar{ u} h$	Zh	$ u \bar{\nu} h$	$t ar{t} h$	Zhh	$ u \bar{\nu} h$	$t \bar{t} h$	$ u \bar{ u} h h$
$\Delta\sigma/\sigma$	2.5%	-	-	-		42.7%			26.3%
BR(invis.)	< 0.80 %	-	-	-	-				
mode				$\Delta(\sigma \cdot BR)$	$O/(\sigma \cdot B)$	R)			
$h o b\overline{b}$	1.2%	10.5%	1.8%	0.66%	28%		0.32%	6.0%	
$h \to c\bar{c}$	8.3%	-	13%	6.2%			3.1%		
$h \to gg$	7.0%	-	11%	4.1%			2.3%		
$h \to WW^*$	6.4%	-	9.2%	2.4%			1.6%		
$h \to \tau^+ \tau^-$	4.2%	-	5.4%	9.0%			3.1%		
$h \to ZZ^*$	19%	_	25%	8.2%			4.1%		
$h \to \gamma \gamma$	29-38%	-	29-38%	20-26%			7-10%		
$h \to \mu^+ \mu^-$	100%	-	-	-			31%		

Table 5.2. Expected accuracies for cross section and cross section times branching ratio measurements for the $125\,\text{GeV}\ h$ boson assuming you run 3×10^7 s at the sum of the baseline and upgrade differential luminosities for each center of mass energy. For invisible decays of the Higgs, the number quoted is the 95% confidence upper limit on the branching ratio.

\sqrt{s} and ${\cal L}$	$1150{ m fb}^{-1}$ a	$1600\mathrm{fb^{-1}}$ at $500\mathrm{GeV}$				$2.5\mathrm{ab^{-1}}$ at $1\mathrm{TeV}$			
(P_{e^-}, P_{e^+})	(-0.8,-	+0.3)		(-0.8,-	+0.3)		(-0.8, +0.2)		
	Zh	$ u \bar{\nu} h$	Zh	$ u \bar{\nu} h$	$t \overline{t} h$	Zhh	$ u \bar{\nu} h$	$t \overline{t} h$	$ u \bar{ u} h h$
$\Delta\sigma/\sigma$	1.2%	-	-	-		23.7%			16.7%
BR(invis.)	< 0.37 %	-	-	-			-		
mode		$\Delta(\sigma \cdot BR)/(\sigma \cdot BR)$							
$h o b \overline{b}$	0.56%	4.9%	1.0%	0.37%	16%		0.20%	3.8%	
$h \to c\bar{c}$	3.9%	-	7.2%	3.5%			2.0%		
h o gg	3.3%	-	6.0%	2.3%			1.4%		
$h \to WW^*$	3.0%	-	5.1%	1.3%			1.0%		
$h \to \tau^+ \tau^-$	2.0%	-	3.0%	5.0%			2.0%		
$h \to ZZ^*$	8.8%	-	14%	4.6%			2.6%		
$h \to \gamma \gamma$	16%	-	19%	13%			5.4%		
$h \to \mu^+ \mu^-$	-	-	-	-			20%		