Physics Opportunities with High Intensity Accelerators

The Six Accelerator Capability areas:

– Energy Frontier Hadron Colliders
– Energy Frontier Lepton and Gamma Colliders
– High Intensity Secondary Beams Driven by Protons
– High Intensity Electron and Photon Beams
– Electron-ion Colliders
– Accelerator Technology Testbeds and Test Beams

Example Acc. Sources:
– Neutrino super-beams
– Project-X
– Beta-beams
– DAEδALUS & pion DAR
– IsoDAR (isotope DAR)
– Neutrino Factory

Example Physics:
– Neutrino 3-flavor mixing
– Sterile neutrino hints
– Other weakly interacting and dark sector particles
– Non-standard neutrino interactions
Neutrino 3-flavor Mixing ⇒ Precision Measurement Era

\[U_{PMNS}^{2013} = \begin{pmatrix} 0.779 \text{ to } 0.848 & 0.510 \text{ to } 0.604 & 0.122 \text{ to } 0.190 \\ 0.183 \text{ to } 0.568 & 0.385 \text{ to } 0.728 & 0.613 \text{ to } 0.794 \\ 0.200 \text{ to } 0.576 & 0.408 \text{ to } 0.742 & 0.589 \text{ to } 0.775 \end{pmatrix} \]

Neutrino mixings now known with similar error to 1995 quark mixings.

Beyond neutrino mixings:

- Need to determine “Mass Hierarchy”
 - Use long baseline experiments through matter effects (i.e. LBNE)

- Need to determine and measure “CP Violation”
 - Key question for the physics of neutrino mixing (also maybe Leptogenesis)
 - Difficult: need precision oscillation measurements
Key Experimental Requirements

• Beam (neutrino/antineutrino source) intensity
 – Statistics at a premium (especially for $\bar{\nu}$ running)
 – Need good understanding of flux and flavor components

• Detector size and efficiency
 – Larger size can impact cost and detection efficiency

• Control of systematic uncertainties
 – Need to fit shape of event energy distribution
 • Energy dependence of flux, backgrounds, and efficiency
 – Need to compare ν versus $\bar{\nu}$ distribution
 • May be complicated by ν contamination in $\bar{\nu}$ running

Examples

LBNE: Fermilab to South Dakota
 – 35 kton Liquid Argon - 700kW to 1200kW beam power
 – Optimum 1300km distance for on-axis pion decay-in-flight
 – Significant matter effects

Hyper-K: J-PARC to Hyper-K
 – 560 kton water cherenkov - 750kW beam power
 – Off-axis 295km distance
 – Small matter effects
Improvements with Better Accelerator Sources

Project-X:
- x3 improved intensity for LBNE
- (0.7MW → 1.1MW → 2.3MW)

Beta-Beams:
- Pure ν_e and $\bar{\nu}_e$ beams generated by the β-decay of accelerated radio-nuclides stored in a high energy storage ring.
 - Measure $\nu_e \rightarrow \nu_\mu$ oscillations
Improvements with Better Accelerator Sources (2)

DAEδALUS:
- Pion decay-at-rest neutrino source produced by high-intensity cyclotron
 - Very high-intensity $\bar{\nu}_\mu$ source with known spectrum
- Neutrino sources at three different distances
 - Use inverse-beta-decay interaction to isolate a pure sample of $\bar{\nu}_\mu \to \bar{\nu}_e$ oscillations
- Can combine DAEδALUS antineutrino data set with long baseline neutrino-only data for much improved CP violation search
 - Example: combination with Hyper-K

![Diagram](image.png)
Collection of Data That Doesn’t Fit 3-neutrino Model ⇒ Sterile Neutrinos?

- MiniBooNE/LSND $\nu_e / \bar{\nu}_e$ appearance signals

Data sets indicate a high Δm^2

Can be fit by introducing a new ν, ...but it must be non-interacting (sterile)!

- Reactor Anomaly: $\bar{\nu}_e$ disappearance signals?

These signals are at the 2-4σ level ⇒ Need new “definitive” experiments

Establishing the existence of sterile neutrinos would be a major result for particle physics
Probing $\Delta m^2 \sim 1 \text{ eV}^2$ Oscillations

Short and Very-short Baseline Oscillation Experiments

ν - Source

Radioactive Source
or
Isotope Source
or
Reactor Source
or
Proton into Dump Source

ν - Detector

• Need definitive experiments
 – Significance at the $> 5\sigma$ level
 – Smoking gun: Observation of oscillatory behavior within detector

• Several directions for next generation accelerator experiments
 – Multi-detector accelerator neutrino beam experiments
 – Very short baseline (VSBL) experiments with compact neutrino sources

• Many ideas and neutrino sources:
 – Reactor sources
 – Radioactive sources
 – Isotope sources
 – π / K decay-at-rest sources
 – π decay-in-flight sources
 – Low-energy ν-Factory source

Light Sterile Neutrinos: A White Paper

Improvements with Better Accelerator Sources

• Short baseline pion decay-in-flight beams
 – Project-X could provide an enhanced replacement to the existing Booster-Neutrino Beam
 – Multi-detector (near-mid-far) provide definitive sterile osc searches
 • LAr1: 1 kton liquid argon
 • BooNE-X: 1-2 kton oil/scint

• Pion decay-at-rest beam
 Protons into dump
 \[\rightarrow \pi^+ \rightarrow \nu_\mu \mu^+ \rightarrow e^+ \nu_e \bar{\nu}_\mu \]
 – Spallation neutron facilities
 • OscSNS: at SNS facility
 • JPARC SN facility
 – Also, Project-X RCS option
 – Physics signals:
 \[\bar{\nu}_e \text{ appearance} \]
 \[\nu_\mu^{12}\text{C neutral current} \]
 \[\nu_e \text{ disappearance} \]

Other Physics:
- \(\nu \) Coherent Scattering
- Supernova cross sections
Improvements with Better Accelerator Sources (2)

- **IsoDAR:** Isotope Decay-at-rest beam (high intensity ν_e source)
 - P (60 MeV@10 ma) into target $\rightarrow ^8\text{Li}$
 - $^8\text{Li} \rightarrow ^8\text{Be} + e^- + \bar{\nu}_e$
 - Known $\bar{\nu}_e$ energy spectrum (mean 6.5 MeV)
 - Observe changes in the event rate as a function of L/E
 - $\sim 160,000$ IBD events / yr in Kamland
Possible Staging of Neutrino Factory

Neutrino factory has the advantages:

1. well collimated beam
2. known energy spectrum
3. easier detection of outgoing μ^\pm in $\nu_e \rightarrow \nu_\mu$
 but need magnetized detector

• νSTORM: Short baseline neutrino factory enabling a definitive search for sterile neutrinos
• L3NF: An initial long baseline neutrino factory, optimized for a detector at Homestake that exceeds the capabilities of conventional superbeam technology.
• NF: A full intensity neutrino factory ultimate source to enable precision CP violation measurements

<table>
<thead>
<tr>
<th>System</th>
<th>Parameters</th>
<th>Unit</th>
<th>νSTORM</th>
<th>L3NF</th>
<th>NF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance</td>
<td>stored μ^+ or μ^-/year</td>
<td></td>
<td>8×10^{17}</td>
<td>2×10^{20}</td>
<td>1.25×10^{21}</td>
</tr>
<tr>
<td></td>
<td>ν_e or ν_μ to detectors/yr</td>
<td></td>
<td>3×10^{17}</td>
<td>9.4×10^{19}</td>
<td>5.6×10^{20}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Detector</th>
<th>Far Detector</th>
<th>Type</th>
<th>Mag LAr</th>
<th>Mag LAr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance from ring</td>
<td>km</td>
<td>1.5</td>
<td>1300</td>
<td>1300</td>
</tr>
<tr>
<td>Mass</td>
<td>kT</td>
<td>1.3</td>
<td>10</td>
<td>30?</td>
</tr>
<tr>
<td>magnetic field</td>
<td>T</td>
<td>2</td>
<td>0.5?</td>
<td>0.5?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Detector</th>
<th>Near Detector</th>
<th>Type</th>
<th>Liquid Ar</th>
<th>Liquid Ar</th>
<th>Liquid Ar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance from ring</td>
<td>m</td>
<td>50</td>
<td>100</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Mass</td>
<td>kT</td>
<td>0.1</td>
<td>1</td>
<td>2.7</td>
<td></td>
</tr>
<tr>
<td>magnetic field</td>
<td>T</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>
Non-Standard Neutrino Interactions

- Non-standard neutrino interactions (NSI) would alter matter effects in long baseline neutrino oscillation measurements
 - LBNE with Project-X has good baseline and statistics

NC NSI discovery reach (3σ C.L.)

\[
sin^2 2\theta_{13} = 0.094
\]
only one \(\epsilon \neq 0 \) at a time
Left/right edges: Best/worst arg(\(\epsilon \))

- Precision neutrino-electron scattering can also probe NSI since it is a well-understood Standard Model process
 - An IsoDAR cyclotron experiment at Kamland would have good statistics for \(\overline{\nu}_e + e \rightarrow \overline{\nu}_e + e \)
Searching for Exotic Particles with Short-baseline Experiments

- Short baseline experiments are a good tool for exotic particle searches including axions, dark gauge bosons, and WIMPs
 - A “portal’ to the dark sector is dark photon mixing with normal photons and π^0 / η^0 decays to photons can produce “dark-sector” particles
 - Best to run in a “beam-dump” mode (no decay region) to suppress the conventional neutrino backgrounds from pion and muon decay.
 - Not compatible with regular neutrino running - so need dedicated running
 - Intensity and energy are key parameters that could be significantly improved with various stages of Project-X
 - Increase of x100 @ 8 GeV and x10 @ 100 GeV
End of Part 1
Physics Opportunities
Backup Slides