IAXO at Snowmass: Prospects for the International Axion Observatory CSS 2013 | Snowmass on the Mississippi 29 July – 6 August 2013

Michael Pivovaroff On behalf of the IAXO collaboration

Lawrence Livermore National Laboratory

LLNL-PRES-641561

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Overview

Solar Axion Searches

The International Axion Observatory (IAXO)

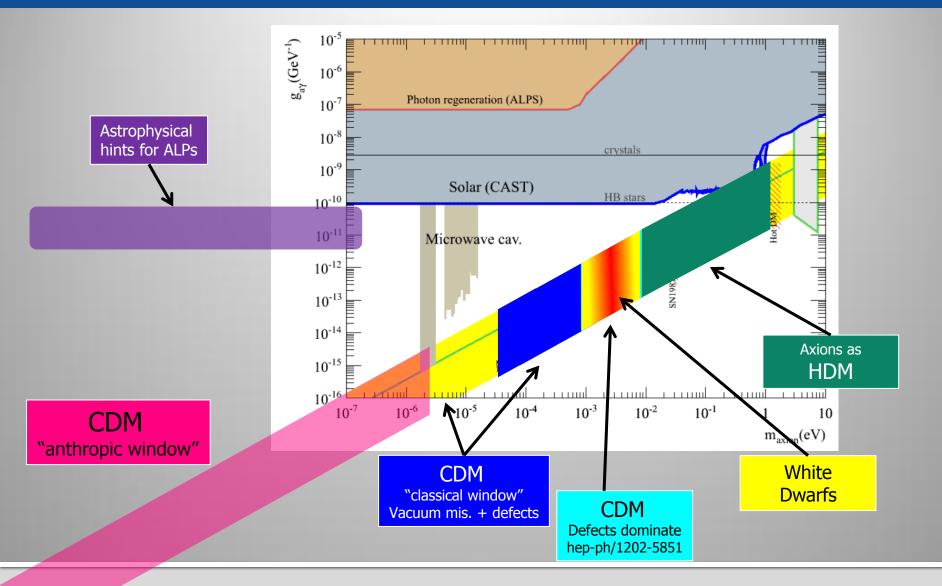
- Magnet
- X-ray optics for IAXO
- Low-background detectors for IAXO
- Prototype testing
- IAXO Prospects
 - Sensitivity prospects
 - Collaboration and schedule
- Conclusions

ournal of Cosmology and Astroparticle Physics

Towards a new generation axion helioscope

I.G. Irastorza,^a F.T. Avignone,^b S. Caspi,^c J.M. Carmona,^a

- T. Dafni,^a M. Davenport,^d A. Dudarev,^d G. Fanourakis,^e
- E. Ferrer-Ribas, f J. Galán, a,f J.A. García, a T. Geralis, e
- I. Giomataris,^f H. Gómez,^a D.H.H. Hoffmann,^g F.J. Iguaz,^f
- K. Jakovčić,^h M. Krčmar,^h B. Lakić,^h G. Luzón,^a M. Pivovaroff,^j
- T. Papaevangelou,^f G. Raffelt,^k J. Redondo,^k A. Rodríguez,^a
- S. Russenschuck,^d J. Ruz,^d I. Shilon,^{d,i} H. Ten Kate,^d A. Tomás,^a
- S. Troitsky,¹ K. van Bibber,^m J.A. Villar,^a J. Vogel,^j L. Walckiers^d


Irastorza et al. JCAP 06 (2011) 013

Lawrence Livermore National Laboratory

CSS 2013 | Snowmass on the Mississippi

LLNL-PRES-641561 2/24

Solar axion searches

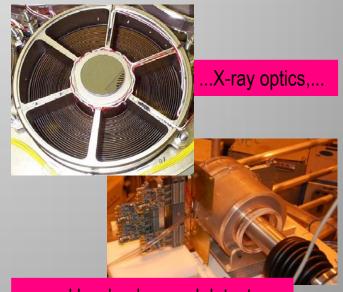
Lawrence Livermore National Laboratory

CSS 2013 | Snowmass on the Mississippi LLNL-PRES-641561

RES-641561 3/24

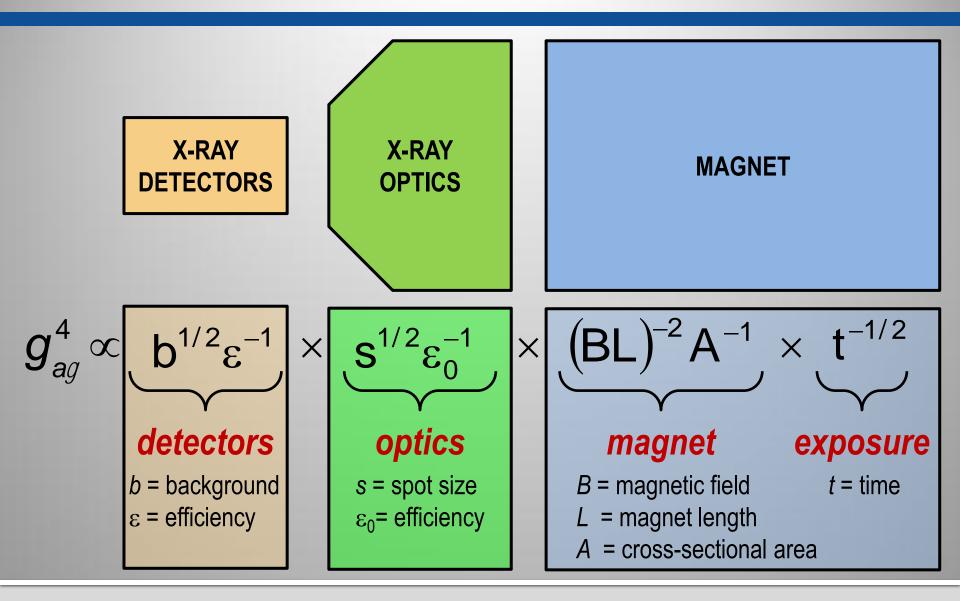
IAXO – 4th generation helioscope

- → 1st generation: Brookhaven Experiment
 - → 2nd generation: Tokyo Helioscope
 - → 3rd generation: CAST


IAXO = 4th generation axion helioscope

- CAST is established as a reference result in experimental axion physics
- IAXO builds on CAST innovations to improve the helioscope technique...
 - Based on the more than a decade CAST experience
 - Technologies have high maturity [TRL ≥ 7] - no fundamental challenges or high-risk R&D required
- No other technique can realistically improve grasp over a wide mass range for γ–a coupling

Ingredients of a successful helioscope



Large & powerful magnet...

...and low background detectors

IAXO – How to improve sensitivity

Lawrence Livermore National Laboratory

CSS 2013 | Snowmass on the Mississippi LLNL-PRES-641561 5/24

IAXO – How to improve sensitivity (2)

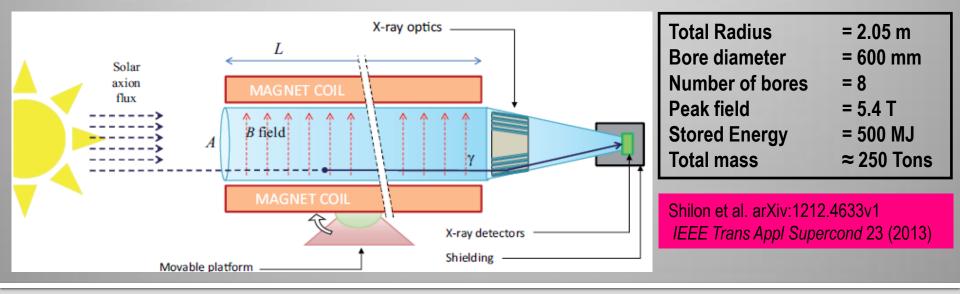
Parameter	Units	CAST-I IAXO nominal		IAXO enhanced	
В	т	9	2.5	2.5	
L	m	9.26	20	20	
А	m²	2 × 0.0015	2.3	2.3	
f _M		1	300	300	
b	10 ⁻⁵ /(keV cm² s)	~4	5×10 ⁻³	1×10 ⁻³	
ε _d		0.5-0.9	0.7	0.8	
ε _o		0.3	0.5	0.7	
S	cm²	0.15	8 × 0.2	8 × 0.15	
f _{DO}		1	17	60	
\mathcal{E}_t		0.12	0.5	0.5	
t	year	~1	3	3	
f _T		1	3.5	3.5	
f		1	2×10 ⁴	6×10 ⁴	

Lawrence Livermore National Laboratory

CSS 2013 | Snowmass on the Mississippi LLNL-

LLNL-PRES-641561 6/24

IAXO – The preliminary concepts


Lawrence Livermore National Laboratory

CSS 2013 | Snowmass on the Mississippi LLNL-PRES-641561 7/24

Magnet for IAXO

- CAST has pushed the limits of "recycling", by using one of the best existing magnets (LHC test magnet)
- Only way to markedly improve reach is to build a new magnet for axions
- Significant modeling and design work completed

- Optimal design is a toroidal configuration (similar to ATLAS):
 - Much bigger bores than CAST
 60 cm versus 5 cm
 - Relatively light (no iron yoke)
 - Bores at room temperature
- Incorporate operational principles of a detector magnet with the performance required for axion physics

Lawrence Livermore National Laboratory

Magnet for IAXO (2)

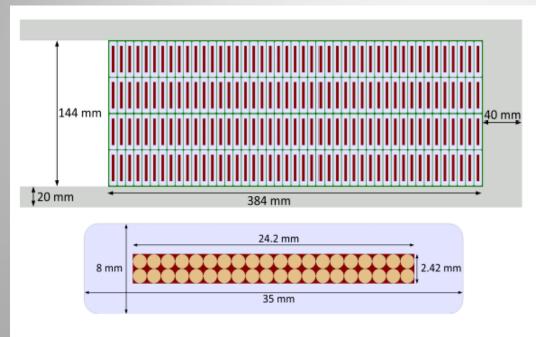
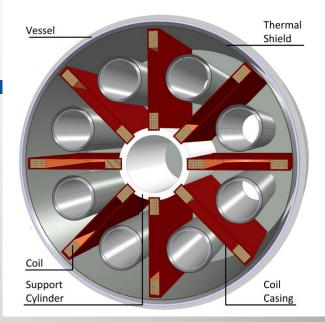
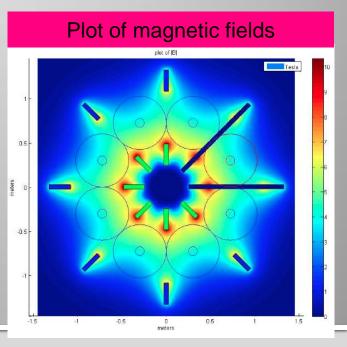
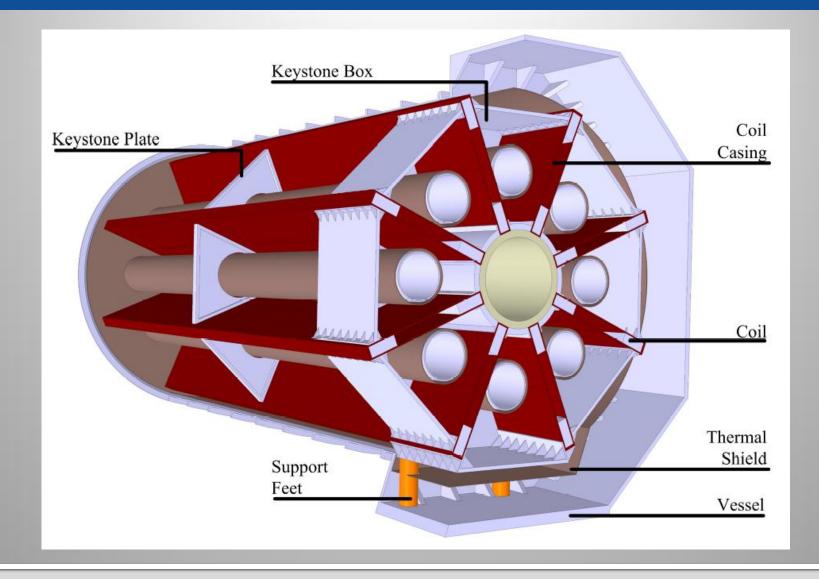




Fig. 4. Cross section of the conceptual design of the two double pancake winding pack and the coil casing (top) and the conductor with a 40 strands NbTi Rutherford cable embedded in a high purity Al stabilizer (bottom).

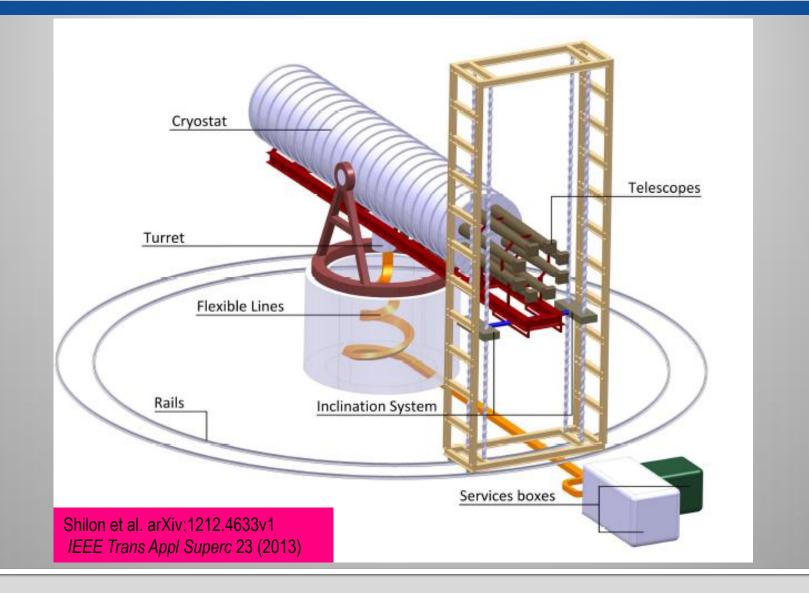
Shilon et al. arXiv:1212.4633v1 IEEE Trans Appl Superc 23 (2013)



Lawrence Livermore National Laboratory

CSS 2013 | Snowmass on the Mississippi

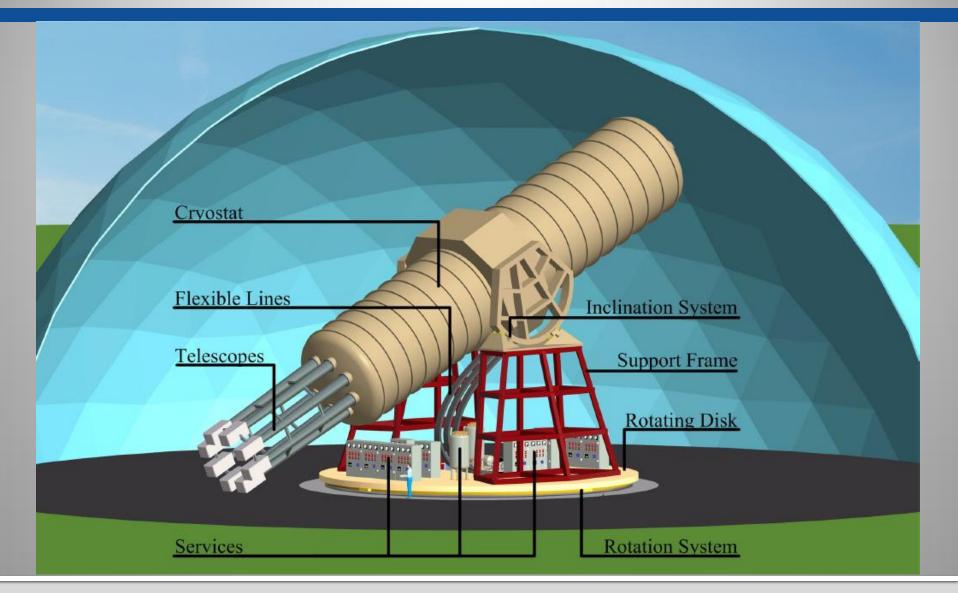
LLNL-PRES-641561 9/24


Magnet for IAXO (3)

Lawrence Livermore National Laboratory CSS 2013 | Snowmass on the Mississippi LLNL-PRES-641561

10/24

Maturing design for IAXO

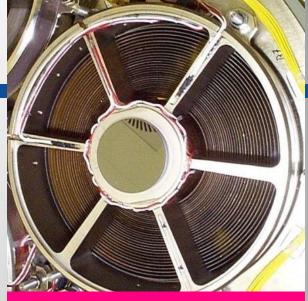


Lawrence Livermore National Laboratory

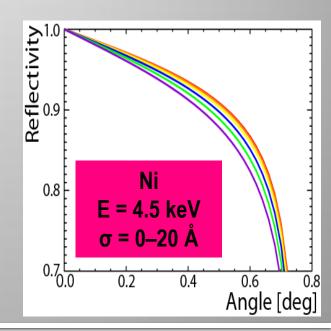
CSS 2013 | Snowmass on the Mississippi LLNL-PRES-641561

RES-641561 **11/24**

IAXO conventional facilities


Lawrence Livermore National Laboratory

CSS 2013 | Snowmass on the Mississippi LLNL-PRES-641561 12/24


X-ray optics

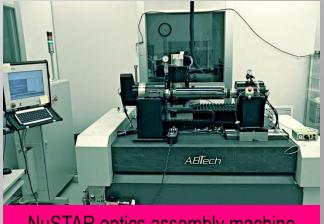
- X-ray astrophysics community has invested heavily in the development of reflective x-ray optics:
 - 40+ years of telescopes in space
 - Excellent imaging capabilities
- Innovations include:

- Nested designs (e.g., Wolter telescopes)
- Low-cost substrates
- Highly reflective coatings
- IAXO optics requirements:
 - Exquisite imaging not needed for solar studies
 - Optics aperture matched to magnet bore size
 → IAXO requires dedicated but cost-effective optics
 - Good throughput (30–50% integrated reflectivity)

ABRIXAS flight-spare telescope

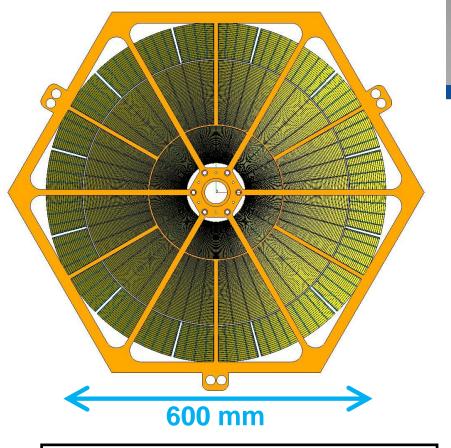
Lawrence Livermore National Laboratory

CSS 2013 | Snowmass on the Mississippi


LLNL-PRES-641561 13/24

X-ray optics (2)

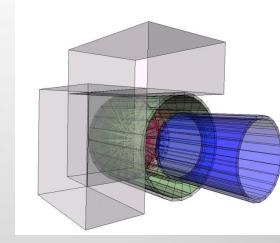
- Thermally-formed glass substrates optics
 - Successfully used for NuSTAR
 - Leverage of existing infrastructure
 - \rightarrow Minimize costs & risks
 - Allows for optimization of the reflective coating (multilayers or thin metal films) of each layer
- NuSTAR launched 13 June 2012
 - Specialized tooling to mirror production and telescope assembly now available
 - Hardware can be easily configured to make optics with a variety of designs and sizes
- Many institutes from NuSTAR optics team [Columbia U, DTU Space, LLNL] in IAXO

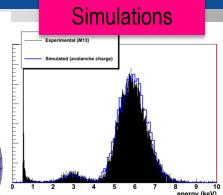

NuSTAR telescope

NuSTAR optics assembly machine J Koglin *et al., Proc SPIE*, **8147**, (2011) W Craig *et al., Proc SPIE*, **8147**, (2011)

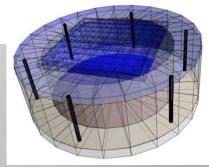
X-ray optics (3)

Telescopes	= 8			
Layers per telescope	= 123			
Mirrors per telescope	≈ 2200			
Focal length	= 5 m			
Coatings	= W/B ₄ C multilayers			
Pass band	= 1–10 keV			
Half-power diameter	= 60 arcsec			

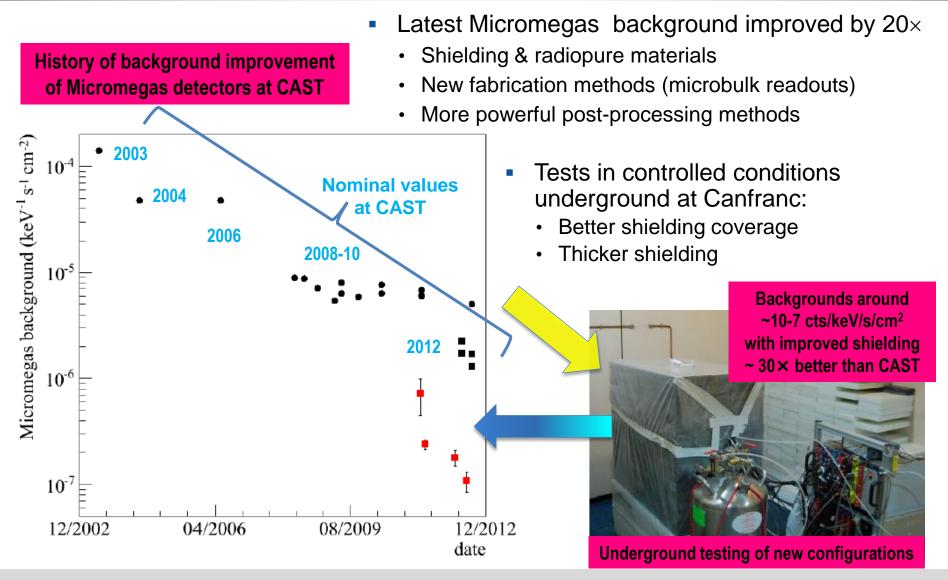

Low-background detectors


Goal

- Micromegas detectors with at least 10⁻⁷ cts/(keV×cm²×s)
- May be possible to reach 10⁻⁸ cts/(keV×cm²×s)


Work ongoing

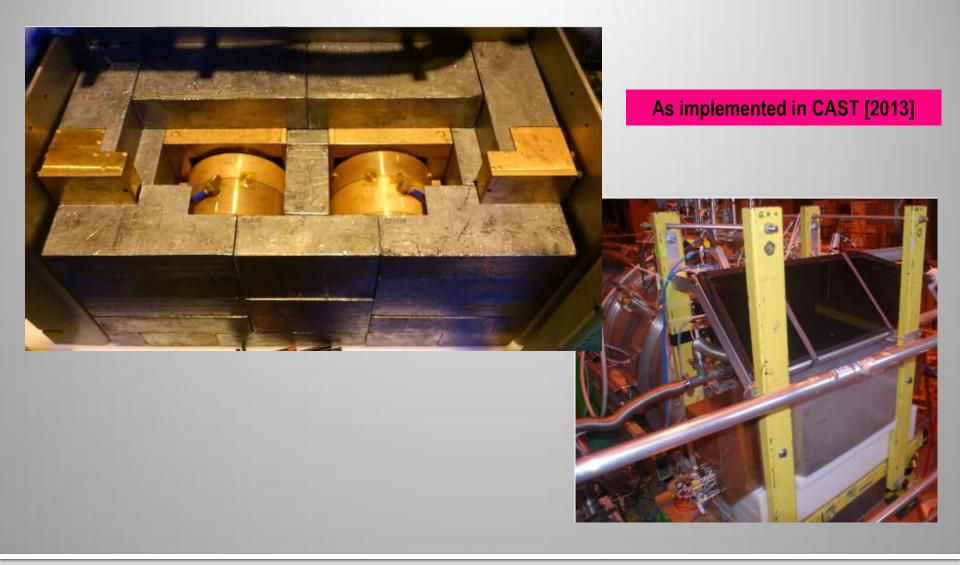
- Experimental tests with current micromegas detectors at CERN, Saclay & Zaragoza
- Underground setup at Canfranc
- Simulation works to build up a background model
- Design a new detector with improvements implemented



Radiopure materials

Lawrence Livermore National Laboratory CSS 2013 | Snowmass on the Mississippi

Low-background detectors (2)

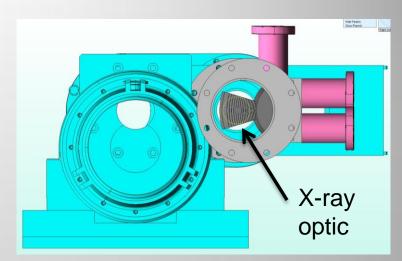


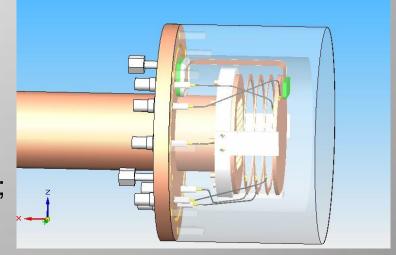
Lawrence Livermore National Laboratory

CSS 2013 | Snowmass on the Mississippi LLNL-PRES-641561

41561 17/24

Low-background detectors (3)

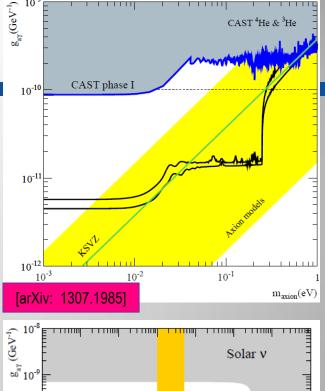

Lawrence Livermore National Laboratory

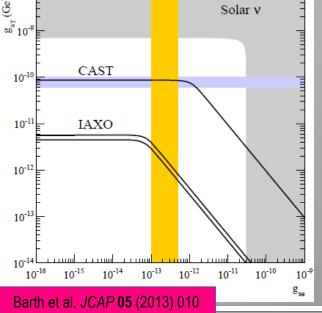

CSS 2013 | Snowmass on the Mississippi LLNL-PRES-641561 18/24

Pathfinder detector+optics for IAXO

- Small x-ray optics
 - Fabricated purposely using thermally-formed glass substrates (NuSTAR-like)
- Micromegas low background detector:
 - Apply lessons learned from R&D: compactness, better shielding, radiopurity,...
 - Aim for background of 10⁻⁷ cts/(keV×cm²×s) or lower
- Collaboration of key groups:
 Saclay, Zaragoza, LLNL, DTU, Columbia

Installation at CAST in 2014 Tests of techniques and instrumentation; gain operational knowledge for IAXO

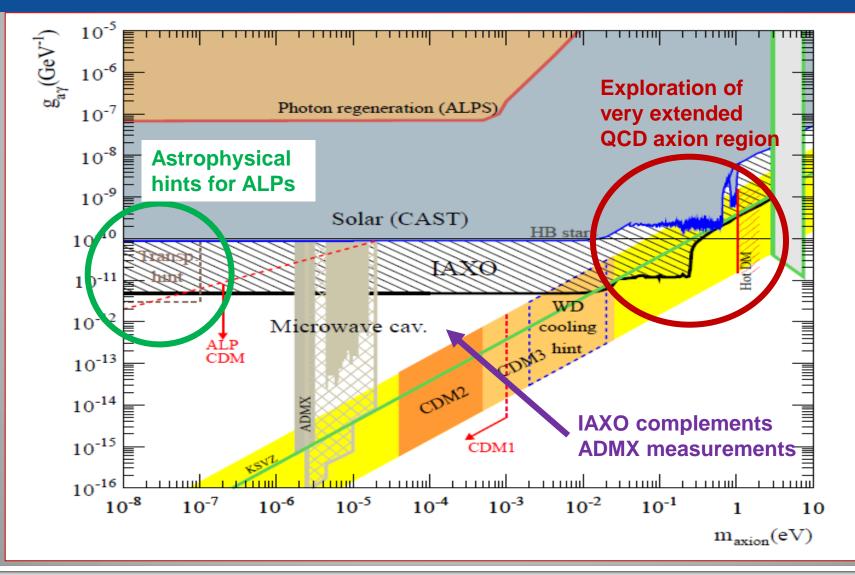




IAXO sensitivity prospects

- Hadronic axion models
 - Improvements of factor 8-30 in g_{aγ} (4×10³ - 1×10⁶ in signal strength)
 - QCD axions at masses of ~meV seem out of reach even for an improved axion helioscope... but
- Non-hadronic axion models provide extra axion emission from the Sun through axionelectron Compton and bremsstrahlung processes

IAXO could improve current CAST sensitivity to non-hadronic axions by about 3 orders of magnitude



Lawrence Livermore National Laboratory

CSS 2013 | Snowmass on the Mississippi LLNL-PRES-641561

61 20/24

IAXO sensitivity prospects (2)

Lawrence Livermore National Laboratory

CSS 2013 | Snowmass on the Mississippi LLNL-PRES-641561

21/24

Collaboration status and schedule

- Collaboration formed and growing
 - 100 physicists, 20 institutions,
 15 countries
- Conceptual design report in preparation; LOI solicited by CERN and submitted August 2013
- 4th gen helioscope supported in 2011 ASPERA roadmap

- Socializing IAXO with DOE/SC/HEP and communities of interest (dark matter, particle astrophysics, ...)
- Budget [ROM] = \$60–110M (dependent on cost models)
 - \$30M magnet
 - \$10M CF
 - \$16M optics

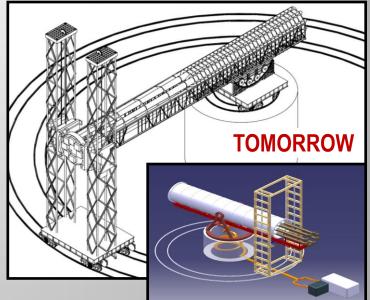
does not include labor

\$ 6M detectors

Yr 1 Yr	2 Yr 3	Yr 4	Yr 5	Yr 6	Yr 7	Yr 8	Yr 9	Yr 10	
Phase I	Phase II		Ph	Phase III		Phase IV			
Reduce risk Prototype: optics, detector, magnet			, eleme calibra	Commission Integrate elements, calibrate, test operations		Solar searches Extragalactic? Microwave cavities?			

Lawrence Livermore National Laboratory

CSS 2013 | Snowmass on the Mississippi LLNL-PRES-641561


61 22/24

Conclusions

CAST is at the forefront of experimental axion physics

- CAST PRL2004 most cited experimental paper in axion physics
- Expertise gathered in magnet, optics, low background detectors, gas systems
- No other technique can realistically improve on CAST sensitivity over a wide mass range.

IAXO is a proposed 4th generation axion helioscope

- Good prospects to improve CAST by 1–1.5 orders of magnitude in sensitivity
- Conceptual design effort is underway and will be completed in 2013
- Together IAXO and haloscopes (ADMX) could explore a large part of the QCD axion model region in the next decade
- Potential for other physics (White Dwarfs, ALPs,...)

Additional physics potential

- More specific ALP or WISP (weakly interacting slim particle) models could be searched for at the low energy frontier of particle physics:
 - Paraphotons / hidden photons
 - Chameleons
 - Non-standard scenarios of axion production
- Axions will also have more subtle implications on other astrophysical objects:
 - Neutron stars
 - SNe
 - Red Giants in Globular Clusters
- If equipped with microwave cavities, dark matter halo axions could be searched for, extending the sensitivity to lower masses.
 - under study → Baker et al. (PRD 85 035018 [2012])
- IAXO as a true "axion facility" open to the community
- Groups are invited to contribute and enrich the science program of IAXO