Dark Matter with mono-jet

Daniel Whiteson, Ning Zhou, David Berge, Tim Tait, LianTao Wang

PRELIMINARY

Interactions

Important caveat:

Requires some interaction with SM

Effective field theories

3

What is in here?

Allows connections to direct, indirect exp.

$$\begin{split} &\sigma_0^{D1} \,=\, 1.60 \times 10^{-37} \mathrm{cm}^2 \left(\frac{\mu_\chi}{1 \mathrm{GeV}}\right)^2 \left(\frac{20 \mathrm{GeV}}{M_\star}\right)^6, \\ &\sigma_0^{D5,C3} \,=\, 1.38 \times 10^{-37} \mathrm{cm}^2 \left(\frac{\mu_\chi}{1 \mathrm{GeV}}\right)^2 \left(\frac{300 \mathrm{GeV}}{M_\star}\right)^4, \\ &\sigma_0^{D8,D9} \,=\, 9.18 \times 10^{-40} \mathrm{cm}^2 \left(\frac{\mu_\chi}{1 \mathrm{GeV}}\right)^2 \left(\frac{300 \mathrm{GeV}}{M_\star}\right)^4, \\ &\sigma_0^{D11} \,=\, 3.83 \times 10^{-41} \mathrm{cm}^2 \left(\frac{\mu_\chi}{1 \mathrm{GeV}}\right)^2 \left(\frac{100 \mathrm{GeV}}{M_\star}\right)^6, \\ &\sigma_0^{C1,R1} \,=\, 2.56 \times 10^{-36} \mathrm{cm}^2 \left(\frac{\mu_\chi}{1 \mathrm{GeV}}\right)^2 \left(\frac{10 \mathrm{GeV}}{m_\chi}\right)^2 \left(\frac{10 \mathrm{GeV}}{M_\star}\right)^4, \\ &\sigma_0^{C5,R3} \,=\, 7.40 \times 10^{-39} \mathrm{cm}^2 \left(\frac{\mu_\chi}{1 \mathrm{GeV}}\right)^2 \left(\frac{10 \mathrm{GeV}}{m_\chi}\right)^2 \left(\frac{60 \mathrm{GeV}}{M_\star}\right)^4. \end{split}$$

A few possibilities

Name	Operator	Coefficient	
D1	$\bar{\chi}\chi \bar{q}q$	m_q/M_*^3	
D2	$\bar{\chi}\gamma^5\chi \bar{q}q$	im_q/M_*^3	
D3	$\bar{\chi}\chi \bar{q}\gamma^5 q$	im_q/M_*^3	
D4	$\bar{\chi}\gamma^5\chi \bar{q}\gamma^5q$	m_q/M_{\star}^3	
D5	$\bar{\chi}\gamma^{\mu}\chi \bar{q}\gamma_{\mu}q$	$1/M_{*}^{2}$	
D6	$\bar{\chi}\gamma^{\mu}\gamma^{5}\chi\bar{q}\gamma_{\mu}q$	$1/M_{*}^{2}$	
D7	$\bar{\chi}\gamma^{\mu}\chi\bar{q}\gamma_{\mu}\gamma^{5}q$	$1/M_{*}^{2}$	
D8	$\bar{\chi}\gamma^{\mu}\gamma^{5}\chi\bar{q}\gamma_{\mu}\gamma^{5}q$	$1/M_{*}^{2}$	
D9	$\bar{\chi}\sigma^{\mu\nu}\chi\bar{q}\sigma_{\mu\nu}q$	$1/M_{*}^{2}$	
D10	$\bar{\chi}\sigma_{\mu\nu}\gamma^5\chi\bar{q}\sigma_{\alpha\beta}q$	i/M_{\star}^{2}	
D11	$\bar{\chi}\chi G_{\mu\nu}G^{\mu\nu}$	$\alpha_s/4M_*^3$	
D12	$\bar{\chi}\gamma^5\chi G_{\mu u}G^{\mu u}$	$i\alpha_s/4M_*^3$	
D13	$\bar{\chi}\chi G_{\mu u}\tilde{G}^{\mu u}$	$i\alpha_s/4M_*^3$	
D14	$\bar{\chi}\gamma^5\chi G_{\mu u}\tilde{G}^{\mu u}$	$\alpha_s/4M_*^3$	

Validity

The effective field theory approach

- assumes the mediator is heavy
- the interaction can be modeled as a 4f vertex

Assuming simple structure:

- mediator mass M, couplings g1, g2
- Require: $M > Q^2$, g1g2 < $16\pi^2$
- not universally applicable, but very broadly

Goal

In context of snowmass, we would like to know:

- What is the power of the proposed facilities to probe DM, via both effective field theories and explicitly specified mediators?

Method

Simple extrapolations

Start from published 7 TeV 5/fb analyses
Extrapolate: much easier than recreating analysis
in theory space

Extrapolations:

MET threshold efficiency
Signal cross-sections
Background cross-sections
Background uncertainty

MET threshold

Thresholds will have to rise

- QCD larger at higher energy
- Trigger thresholds higher for higher lumi Estimate efficiency drops using parton-level MET

\sqrt{s} [TeV]] [GeV]	\mathcal{L} [fb ⁻¹]
7	350	4.9
14	550	300
14	1100	3000
33	2750	3000
100	5500	3000

Signal extrapolation

First approximation:

Calculated sigma(XXi) with MG5 Did ME+PS matching for 0,1jet.

$$N_{
m sig}(\sqrt{s},~\mathcal{L},~\cancel{E}_{
m T}>X)=\mathcal{L} imes\epsilon_0rac{\epsilon_{E_{
m T}>X}}{\epsilon_{E_{
m T}>350}} imes\sigma(\sqrt{s})$$

Allows for increasing MET thresholds

Background extrapolation

First approximation:

Calculated sigma(XXi) with MG5 Did ME+PS matching for 0,1jet.

Allows for increasing MET thresholds

Extrapolation Factor

$$E_b(\sqrt{s}, \mathcal{L}, \cancel{E}_T > X) = \frac{\mathcal{L}}{5 \text{ fb}^{-1}} \times \frac{\epsilon_{\cancel{E}_T' > X}}{\epsilon_{\cancel{E}_T' > 350}} \times \frac{\sigma(\sqrt{s})}{\sigma(\sqrt{s} = 7)}$$

Linear scaling of Background

$$N_{
m bg}(\sqrt{s},~\mathcal{L},~E_{
m T}>X)=E_b imes N_{
m bg}^{\sqrt{s}=7,\mathcal{L}=5,E_{
m T}>350}$$

BG uncertainty

Uncertainty

Dominant contribution is data statistics in control region (CR).

CR has similar MET cut to signal region, similar data statistics.

Extrapolation Factor

$$E_b(\sqrt{s}, \mathcal{L}, E_T > X) = \frac{\mathcal{L}}{5} \times \frac{\epsilon_{E_T > X}}{\epsilon_{E_T > 350}} \times \frac{\sigma(\sqrt{s})}{\sigma(\sqrt{s} = 7)}$$

1/sqrt scaling of Background

$$\frac{\Delta N_{\rm bg}}{N_{\rm bg}}(\sqrt{s},~\mathcal{L},~\cancel{E}_{\rm T}>X) = \frac{1}{\sqrt{E_b}} \left(\frac{\Delta N_{\rm bg}}{N_{\rm bg}}\right)^{\sqrt{s}=7,\mathcal{L}=5,\cancel{E}_{\rm T}>350}$$

Events

\sqrt{s} [TeV]	 Æ _T [GeV]	\mathcal{L} [fb ⁻¹]	N_{D5}	$N_{ m bg}$
7	350	4.9	73.3	1970 ± 160
14	550	300	2500	2200 ± 180
14	1100	3000	3200	1760 ± 143
33	2750	3000	$8.2 \cdot 10^4$	1870 ± 150
100	5500	3000	$3.4 \cdot 10^6$	2310 ± 190

MET cuts increase at each stage

Results: d5

Indirect plane

Light mediator

What if the mediator is too heavy at one collider, but not for the next generation machine?

Approach

Parameters

$$\frac{1}{M_*} = \frac{g_{Z'}}{M_{Z'}}$$

Take M^* from one facility, explore models with $g/MZ' = 1/M^*$ at next facility.

Assumptions

Same background approach
Use LO cross-section from model, efficiencies
from paper, extrapolated to higher MET cuts.
Assume xs goes like g²

D5 14 TeV

D5 7 TeV limit is $M^* = ^780$ GeV

FIG. 7: Sensitivity at $\sqrt{s} = 14$ TeV, $\mathcal{L} = 300$ fb⁻¹ to a dark matter pairs produced through a real Z' mediator. Left, expected limits on the coupling $g_{Z'}$ versus Z' mass for two choices of m_{χ} for events with $\not\!\!E_{\rm T} > 550$ GeV; also shown are the values of $g_{Z'}$ which satisfy $g'/m_{Z'} = 1/M_*$, where M_* are limits from $\sqrt{s} = 7$ TeV, $\mathcal{L} = 5$ fb⁻¹. Right, production cross section as a function of Z' mass, compared to expected limits, where $g_{Z'}$ depends on $m_{Z'}$ as in the left pane.

3000/fb

FIG. 8: Sensitivity at $\sqrt{s}=14$ TeV, $\mathcal{L}=3000~{\rm fb^{-1}}$ to a dark matter pairs produced through a real Z' mediator. Left, expected limits on the coupling $g_{Z'}$ versus Z' mass for two choices of m_χ for events with $\not\!E_{\rm T}>1100$ GeV; also shown are the values of $g_{Z'}$ which satisfy $g'/m_{Z'}=1/M_*$, where M_* are limits from $\sqrt{s}=14$ TeV, $\mathcal{L}=300~{\rm fb^{-1}}$. Right, production cross section as a function of Z' mass, compared to expected limits, where $g_{Z'}$ depends on $m_{Z'}$ as in the left pane.

Summary

Mono-jet events provide a powerful probe of DM pair production

We have extrapolated 7TeV analyses to future pp colliders