

"What -- in my personal opinion -- should be the highest level conclusions of the Energy Frontier report?"

Christopher S. Hill

The Ohio State University
Seattle Snowmass Meeting of the Energy Frontier
July 2, 2013

EF offers unique scientific opportunities for many years to come

- There are very good reasons to expect discovery(ies) with EF research
- LHC will go to 13/14 TeV and push energy frontier higher in a region we all agree is (still) critical to explore
 - All old reasons (e.g. hierarchy problem) more or less remain valid
 - Despite increasing efforts to close them, loop-holes remain in current searches
 - BR, compressed spectra, stealth/RPV, long-lived pls, non-natural scenarios
 - Some new ones now that we have Higgs (e.g. vacuum (meta)stability)
 - DM can be discovered directly via monojets+MET, or confirmed by LHC (and possibly identified) if first observed in CF
 - Unexplored energies, should not discount unexpected surprises
 - Need HL-LHC to carry out full search program
 - Broadband energy of hadron colliders provides needed flexibility
- If on the other hand discovery comes already in Run 2, can study with HL-LHC (and possibly some phase of ILC)
- If no discovery comes by end of HL-LHC, precision Higgs physics can identify next directions in HEP
 - HL-LHC will probe BSM effects via couplings, HH, VV
 - ILC (or possibly other machines) can take over where HL-LHC leaves off
- Significant deviations from SM will motivate (appropriate) machine(s) to identify source of NP

We seem to live near a critical condition

We seem to live near a critical condition

166 15 120 125 130 39

discovery

about

FF is

THE OHIO STATE UNIVERSITY

Maximize these Opportunities

- To carry out the discovery (and precision) program HL-LHC needs significant upgrades as has been noted
 - Should not assume these will be be fully funded
 - And short-changing will limit physics opportunities, maybe miss discoveries
 - Should not discount game changers, which could have a big impact on physics
 - New detectors can significantly alter projections (some require R&D, should enable)
 - 1 MHz L1 bandwidth changes trigger landscape, even more so if tracks are available
 - Forward pixel disks could dramatically change VBF tagging capability at highest PU, ditto for precision timing in calorimeters
 - Experience with data leads to algorithmic performance exceeding naive expectations
 - Many examples in CMS (e.g. particle flow, PU mitigation, VBF, b-tagging in HI collisions, ...)
 - Physics
 - Discoveries may make different demands on the detectors than we can anticipate now; a well upgraded detector will be able to adjust to these needs
 - Opportunity for US to continue successful collaboration in Europe
 - Expand impact beyond already significant roles on LHC
 - Facilitate more global involvement (LBNE, ILC) that may be reciprocated

• This is a way to avoid the zero-sum trap

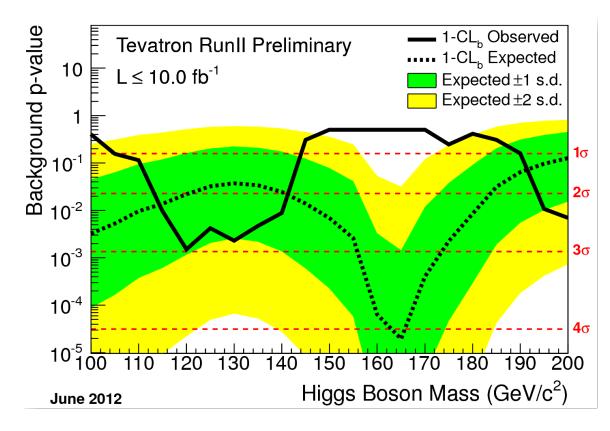
Energy Frontier Issues

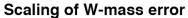
- Discussions with CERN about follow-on to LHC Agreement proceeding
 - Necessary precursor to planning for "Phase-II" upgrades; US scope for "Phase-II" TBD.
- Energy Frontier science plan will require high-energy, high-luminosity LHC running
 - What is the real physics of the TeV scale?
 - this will likely take a few years to sort itself out
 - US "Snowmass/P5" process is an important element, along with European and Japanese HEP strategies
- Significant collaborations with other regions on future colliders will require a high-level approach between governments
 - Modest ground-level R&D efforts can continue as funding allows
 - We support an international process to discuss future HEP facilities that respects the interests of major national and regional partners as well as realistic schedule and fiscal constraints
 - Once Snowmass/P5 studies and the community input are complete, we will be in a better position to evaluate future US priorities for the HEP program in detail
 - We encourage active engagement by all interested parties

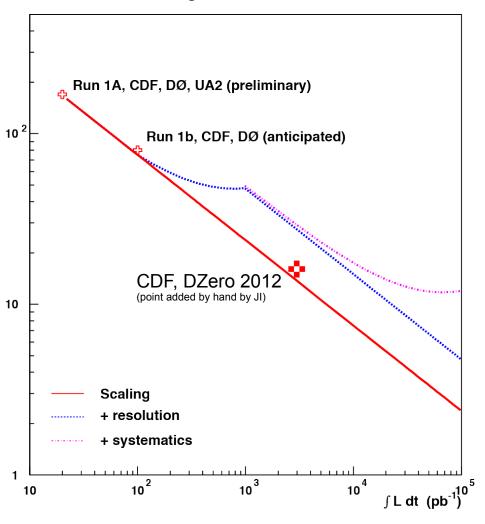
IMO a
conclusion
should be
that the
community
fully supports
these (which
are related)

I also think
we should
express
support for
these
statements

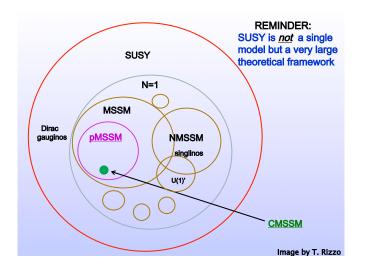
What (i think) we should probably avoid concluding in the report

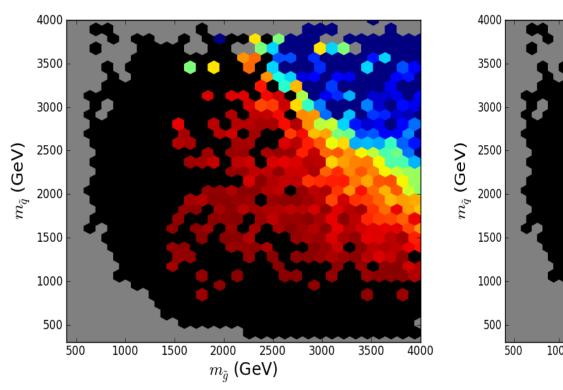

- One facility offers better/worse opportunity for discovery than another because Snowmass studies indicate relative greater/lesser precision on Higgs couplings (or other SM parameters)
 - Firstly, we should not assume it is a zero-sum game at this point
 - Secondly, we need error bars on the error bars (or ranges)
 - Not just to represent uncertainties on the estimates, but also to show range of impact of action(inaction) on opportunities
 - Allow in the estimates for (experimental & theoretical) improvements that have historically been achieved
 - Thirdly, the conclusion does not follow from the data. Arbitrary precision is not the goal discovery is, and for discovery one needs to ask what precision is required to distinguish a NP model from the SM
 - More than this is unnecessary, less is insufficient
 - Without a well-defined model, can't answer this question
 - Scans over model space are a very interesting attempt to address this, but come with their own issues
 - Finally, in prioritization phase, what we say, can and will be used against us (us being EF)

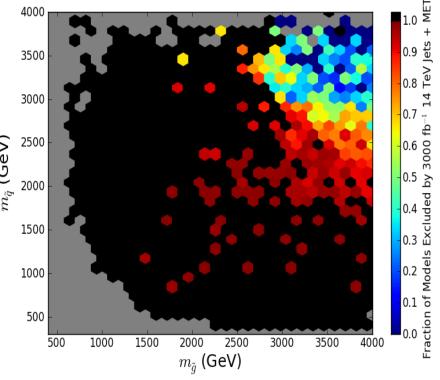

• Internally, debate is healthy ("kick the tires") but externally a lack of consensus on #s hurts



We have found promising sensitivity for the discovery of an intermediate-mass Higgs boson at the Tevatron via the process $q\bar{q} \to WH$, with $H \to b\bar{b}$. We tentatively conclude that a Higgs mass of 80 GeV can be reached with about 5 fb⁻¹, a mass of 100 GeV with about 10 fb⁻¹, and a mass of 120 GeV with about 25 fb⁻¹. These results are very encouraging, and suggest that the Tevatron could play a significant role in the quest for an intermediate-mass Higgs boson.


TeV2000 (1996)


TeV2000 (1996)



J. Hewett (Sunday's talk)

300 fb⁻¹: 92.1% of models excluded

3 ab⁻¹: 97.5% of models excluded

