Theory Uncertainties in SM Higgs Decays

Sven Heinemeyer, IFCA (CSIC, Santander)

Seattle, 07/2013

LHC Higgs Cross Section Working Group (BR)

A. Denner, A. Mück, I. Puljak, D. Rebuzzi, M. Spira

All the details:

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/BRs

Eur. Phys. J. C 71 (2011) 1753 (2011) [arXiv:1107.5909 [hep-ph]]

Latest SM Higgs BR predictions:

Based on HDECAY and Prophecy4f:

$$\Gamma_H = \Gamma^{\mathsf{HD}} - \Gamma^{\mathsf{HD}}_{ZZ} - \Gamma^{\mathsf{HD}}_{WW} + \Gamma^{\mathsf{P4f}}_{4f}$$

Theoretical uncertainties: General recipe:

1. Parametric Uncertainties: $p \pm \Delta p$

- Evaluate partial widths and BRs with $p, p + \Delta p, p \Delta p$ and take the differences w.r.t. central values
- Upper $(p + \Delta p)$ and lower $(p \Delta p)$ uncertainties summed in quadrature to obtain the Combined Parametric Uncertainty

2. Theoretical Uncertainties:

- Calculate uncertainty for partial widths and corresponding BRs for each theoretical uncertainty
- Combine the individual theoretical uncertainties linearly to obtain the Total Theoretical Uncertainty

3. Total Uncertainty:

Linear sum of the Combined Parametric Uncertainty and the Total Theoretical Uncertainties

Parametric uncertainties:

Parameter	Central Value	Uncertainty	$m_q(m_q)$
$\alpha_s(M_Z)$	0.119	±0.002(90% CL)	
m_{c}	1.42 GeV	\pm 0.03 GeV(2 σ)	1.28 GeV
m_b	4.49 GeV	$\pm 0.06 \text{ GeV}(2\sigma)$	4.16 GeV
m_t	172.5 GeV	±2.5 GeV	165.4 GeV

Comments:

- m_b , m_c : one-loop pole masses those masses accidentally show negligible dependence on α_s , so that their variation can be done independently from α_s
- m_b , m_c uncertainties:

[K. Chetyrkin, J. Kühn, A. Maier, P. Maierhöfer, P. Marquard, M. Steinhauser, C. Sturm [arXiv:0907.2110]] (PDG uncertainties much larger . . .)

Theoretical uncertainties:

Partial Width	QCD	Electroweak	Total
$H o b\overline{b}/c\overline{c}$	$\sim 0.1\%$	\sim 1–2% for $M_H\lesssim$ 135 GeV	~ 2%
$H \to \tau^+ \tau^- / \mu^+ \mu^-$		\sim 1–2% for $M_H\lesssim$ 135 GeV	$\sim 2\%$
$H \to t \overline{t}$	\lesssim 5%	\lesssim 2-5% for $M_H <$ 500 GeV	$\sim 5\%$
		$\sim 0.1 (rac{M_H}{1~ ext{TeV}})^4$ for $M_H > 500~ ext{GeV}$	\sim 5–10%
H o gg	$\sim 3\%$	$\sim 1\%$	\sim 3%
$H o \gamma \gamma$	< 1%	< 1%	$\sim 1\%$
$H o Z \gamma$	< 1%	$\sim 5\%$	$\sim 5\%$
H o WW/ZZ o 4f	< 0.5%	\sim 0.5% for $M_H <$ 500 GeV	$\sim 0.5\%$
		$\sim 0.17 (rac{M_H}{1~ ext{TeV}})^4$ for $M_H > 500~ ext{GeV}$	$\sim 0.515\%$

Comments:

- QCD corrections: scale change by factor 2 and 1/2
- EW corrections: missing HO estimation based on the known structure and size of the NLO corrections
- For $M_H > 500$ GeV: higher-order heavy-Higgs corrections dominate error
- Different uncertainties on a given channel added linearly

Full BR uncertainty overview:

$M_H=126$ GeV						
Decay	TU	PU	Total			
	[%]	[%]	[%]			
$H o \gamma\gamma$	±2.7	±2.2	±4.9			
H o bar b	± 1.5	± 1.9	± 3.3			
H o au au	± 3.5	± 2.1	± 5.6			
$H \rightarrow WW$	± 2.0	± 2.2	± 4.1			
$H \rightarrow ZZ$	±2.0	±2.2	±4.2			

But:

To take into accout correlations it is better/easier to work with uncertainties for the individual decay widths

Channel	Γ [MeV]	$\Delta \alpha_s$	Δm_b	Δm_c	Δm_t	THU
$H \to b \overline{b}$	2.36	-2.3% +2.3%	+3.3% -3.2%	+0.0% -0.0%	+0.0% -0.0%	+2.0% -2.0%
$H \to \tau^+ \tau^-$	$2.59 \cdot 10^{-1}$	+0.0% +0.0%	+0.0% -0.0%	+0.0% -0.0%	$+0.1\% \\ -0.1\%$	+2.0% -2.0%
$H \to \mu^+ \mu^-$	$8.99 \cdot 10^{-4}$	+0.0% +0.0%	+0.0% -0.0%	$-0.1\% \\ -0.0\%$	+0.0% -0.1%	+2.0% -2.0%
$H \to c\overline{c}$	$1.19 \cdot 10^{-1}$	-7.1% +7.0%	$-0.1\% \\ -0.1\%$	+6.2% -6.1%	+0.0% $-0.1%$	+2.0% -2.0%
$H \rightarrow gg$	$3.57 \cdot 10^{-1}$	+4.2% -4.1%	$-0.1\% \\ -0.1\%$	+0.0% -0.0%	-0.2% +0.2%	+3.0% -3.0%
$H \to \gamma \gamma$	$9.59 \cdot 10^{-3}$	+0.0% -0.0%	+0.0% -0.0%	+0.0% -0.0%	+0.0% -0.0%	+1.0% $-1.0%$
$H o Z\gamma$	$6.84 \cdot 10^{-3}$	+0.0% -0.0%	+0.0% -0.0%	+0.0% -0.1%	+0.0% -0.1%	+5.0% -5.0%
$H \to WW^*$	$9.73 \cdot 10^{-1}$	+0.0% -0.0%	+0.0% -0.0%	+0.0% -0.0%	+0.0% -0.0%	+0.5% -0.5%
$H o ZZ^*$	$1.22 \cdot 10^{-1}$	+0.0% -0.0%	+0.0% -0.0%	+0.0% -0.0%	+0.0% -0.0%	+0.5% -0.5%

Data available for $M_H=122~{\rm GeV}, 126~{\rm GeV}, 130~{\rm GeV}$

⇒ used for ATLAS and CMS evaluations ⇒ provided to Snowmass/Higgs

Summary:

- SM Higgs BRs evaluated by combining HDECAY and Prophecy4f
- Parametric uncertainties: α_s , m_b , m_c , m_t
- Theoretical uncertainties: estimate of missing QCD and EW corrections
- Total uncertainties: linear sum
- Available from LHCHXSWG: uncertainties for BRs and decay widhts (the latter preferred for correlations)
- Results used for ATLAS and CMS evaluations
 Results provided to Snowmass/Higgs

Thanks to A. Denner, A. Mück, I. Puljak, D. Rebuzzi, M. Spira