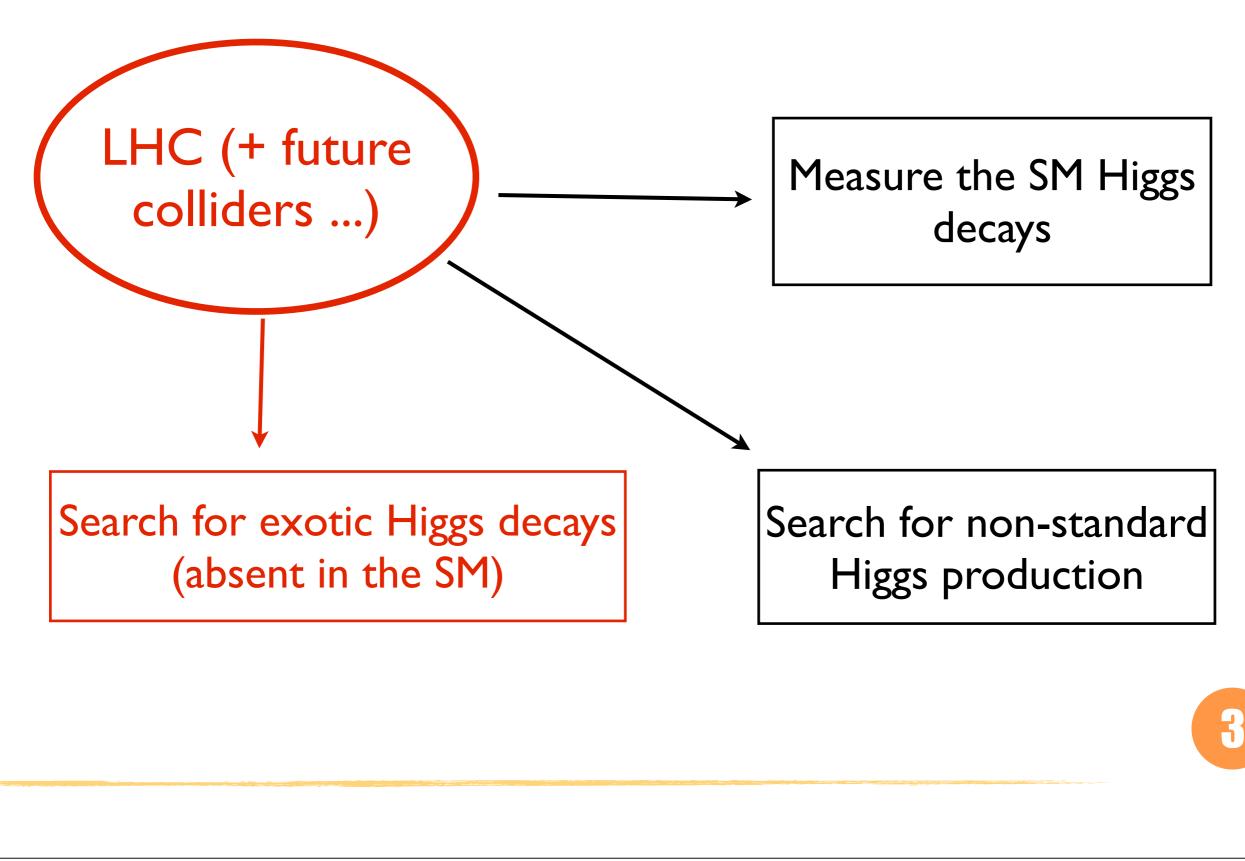
July, 2013

EXOTIC HIGGS DECAYS -AN OVERVIEW

Tao Liu

The Hong Kong University of Science and Technology

- Solving hierarchy problem requires Higgs to couple with new physics directly
- ☑ Higgs is one of the two SM fields that can have renormalizable couplings to SM singlet operators [Patt and Wilczek, arXiv:[hep-ph/0605188]]

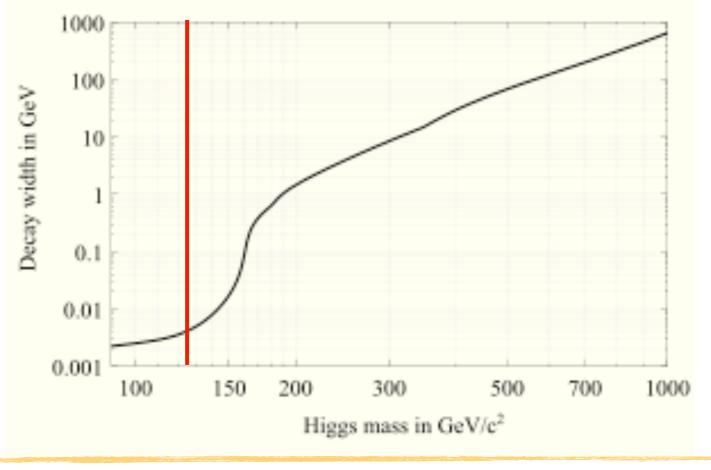

 $\mathcal{L} \supset \lambda H^\dagger H \mathcal{O}_{\mathrm{NP}}$

Lorentz invariant gauge singlet

Both couplings can modify the Higgs productions and decays at LHC.

So we should study everything about it!

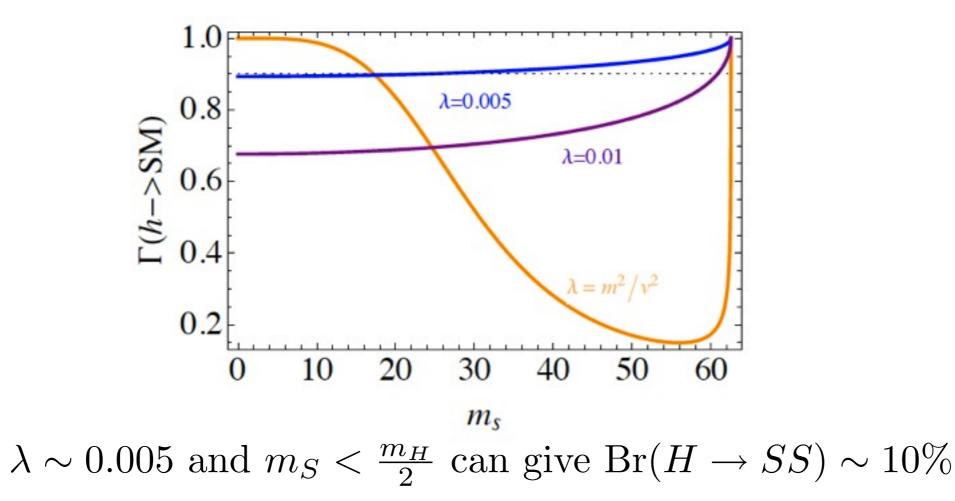
Many Possible Higgs Measurements



☑ The SM Higgs width is tiny for mH ~ 125 GeV

- Decays into gauge bosons are either off-shell (WW*, ZZ*), or at loop level (di-photon, di-gluon)
- Decays into fermions tend to be suppressed because of small Yukawa couplings (except tt*)

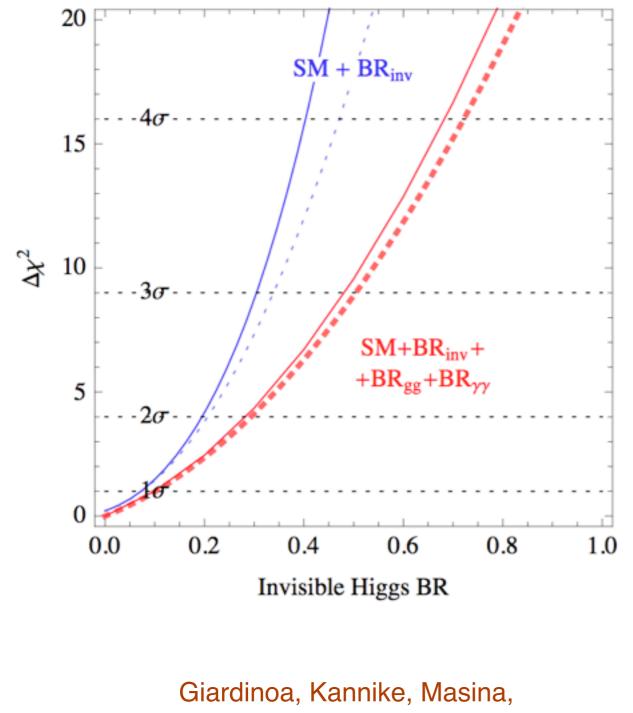
About three orders smaller than the Z or W widths (~ 4MeV only) !



Д

A small non-standard Higgs coupling may lead to sizable effect.

e.g., $\Delta \mathcal{L} = \lambda S^2 |H|^2$ (common building block in extended Higgs sectors)



So exotic Higgs decays are a natural and very efficient way for probing BSM physics

``Invisible'' Higgs Width

Raidal, Strumia, 1303.3570

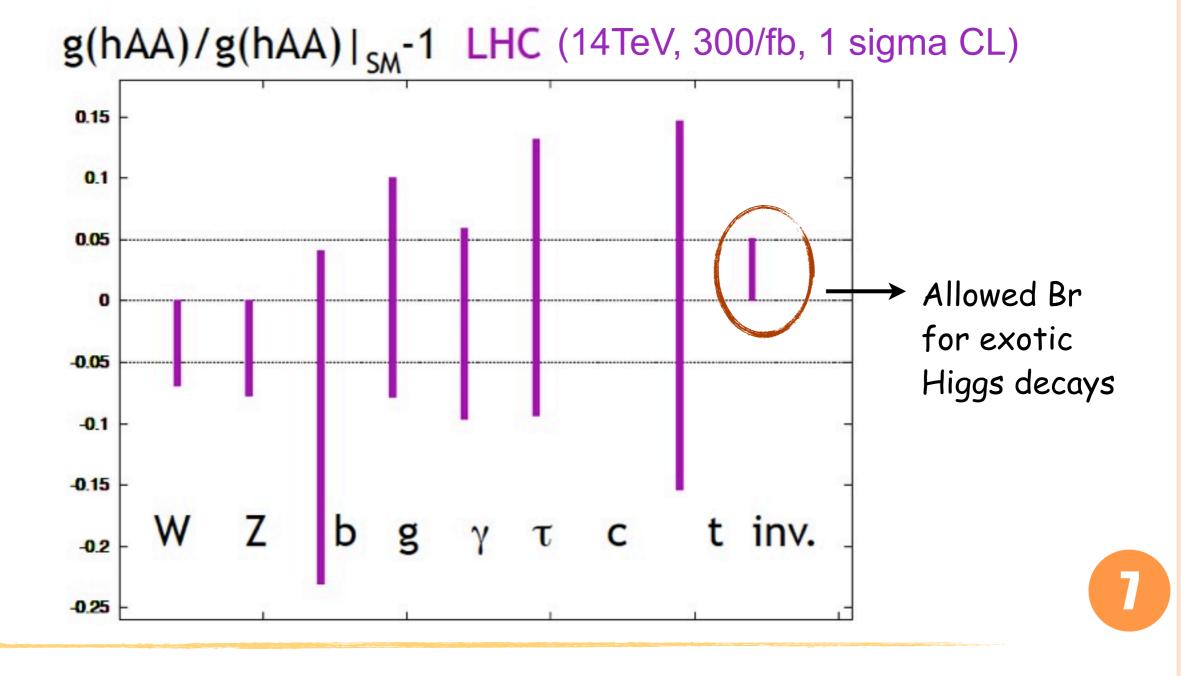
The currently allowed branching ratio for exotic Higgs decays is big

 $BR_{exotic} < 0.3$ at 95% C.L.

☑ As a comparison (for mh=125GeV)

 $\begin{array}{ll} \operatorname{Br}(h_{\mathrm{SM}} \to ZZ^*) & \sim & 0.03 \\ \\ \operatorname{Br}(h_{\mathrm{SM}} \to WW^*) & \sim & 0.15 \\ \\ \\ \operatorname{Br}(h_{\mathrm{SM}} \to \tau\tau) & \sim & 0.06 \end{array}$

There exists a lot of room! (in a more general context, > 0.5 BR is allowed!)


see e.g. Belanger, Dumont, Ellwanger, Gunion, Kraml; Espinosa, Muhlleitner, Grojean, Trott; Ellis

h

There Will Always Be Room for Exotic Decays

O(10%) BR into exotic decay modes are not only allowed by existing data, but will remain reasonable targets for the duration of the LHC program [M. Peskin, 2013]

assume BR(h→new) = 10%, LHC8, 20/fb

channel	# events (raw)	
ggF	39000	
VBF	3150	
W(ev)+h	280	Associated
Z(@)+h	55	Production (AP)
ttH	260	

Searching for them are not easy:

- Many events in ggF/VBF, but suitability depends on the Higgs decays
- Can always trigger w/ AP... but not many events
- Specific signature => dedicated search strategies are usually required
- 8
- Solution States and a state of the states of the states of the states and a state of the states o

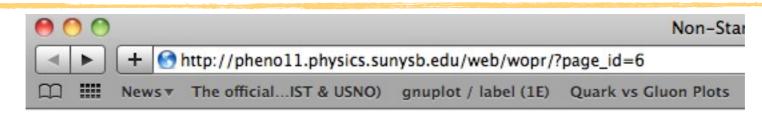
D. Curtin, R. Essig, S. Gori, P. Jaiswal,
A. Katz, TL, Z. Liu,
D. McKeen, J. Shelton, M. Strassler,
Z. Surujon, B. Tweedie, Y. Zhong

Self-formed group of theorists. Our aims are:

- Survey, systematize, prioritize exotic Higgs decays
- Develop search strategies, assess discovery potential, provide viable benchmark models/points
- ☑ Inform trigger selection for LHC14 + future collider
- Second Assemble comprehensive summary document & website to inform experimental analyses (timescale of vol I ~ O(few weeks))

g

Exotic Higgs Decays


David Curtin,¹ Rouven Essig,¹ Stefania Gori,^{2,3} Prerit Jaiswal,⁴ Andrey Katz,⁵ Tao Liu,⁶ Zhen Liu,⁷ David McKeen,⁷ Jessie Shelton,⁵ Matthew Strassler,⁷ Ze'ev Surujon,¹ Brock Tweedie,⁸ and Yiming Zhong¹,^{*}

Self-formed group of theorists. Our aims are:

- Survey, systematize, prioritize exotic Higgs decays
- Develop search strategies, assess discovery potential, provide viable benchmark models/points
- Inform trigger selection for LHC14 + future collider
- Second Assemble comprehensive summary document & website to inform experimental analyses (timescale of vol I ~ O(few weeks))

Non-Standard-Model h Decays

Much work has been done over the past twenty years on non-SM Higgs decays in different contexts. The purpose of this document is to assemble the motivations, models, and signatures of non-SM decays of *h* bosons that appear in the literature, and provide the necessary information for contextualizing, systematizing, and prioritizing LHC searches for such decays.

Please click here for the *motivation* for the careful consideration of Non-Standard-Model h decays at the LHC.

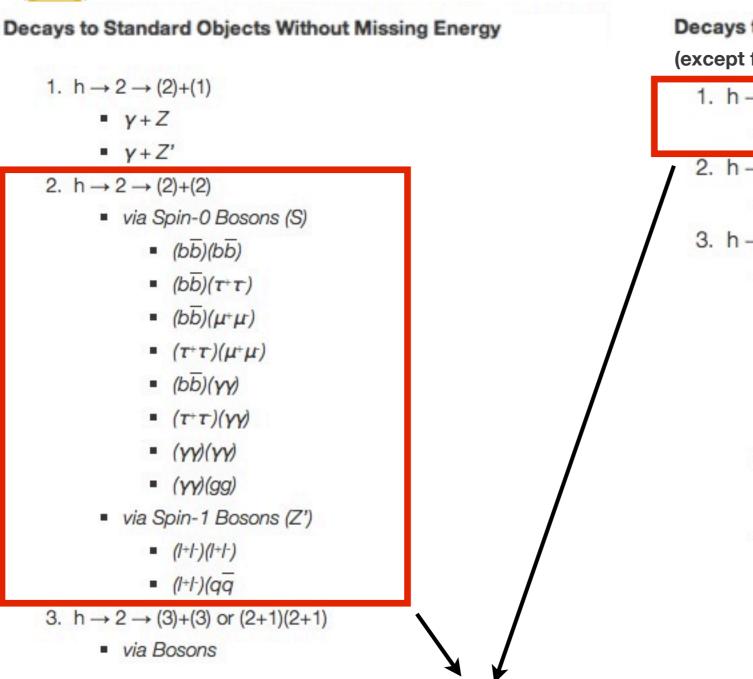
Please click here for the list of possible decays, discussion of prioritization, and available studies.

Leave a Reply

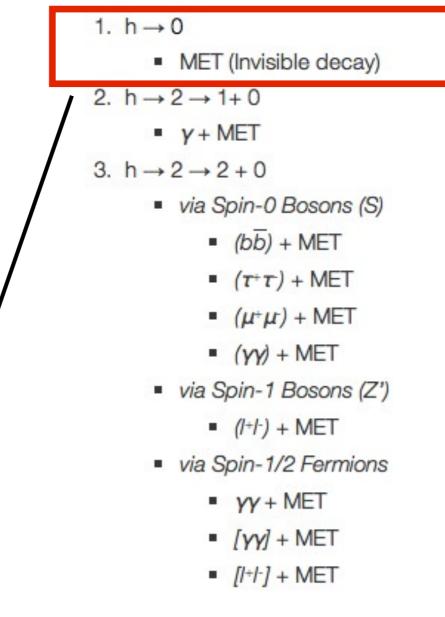
Your email address will not be published. Required fields are marked *

Name *

Decays to Standard Objects Without Missing Energy

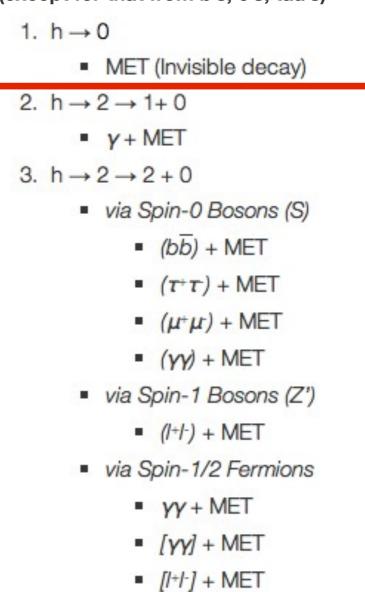

- 1. $h \rightarrow 2 \rightarrow (2)+(1)$
 - **y**+Z
 - γ + Z'
- 2. $h \rightarrow 2 \rightarrow (2)+(2)$
 - via Spin-0 Bosons (S)
 - (bb)(bb)
 - (bb)(τ⁺τ)
 - (bb)(µ⁺µ)
 - (τ⁺τ⁻)(μ⁺μ⁻)
 - (bb)(yy)
 - · (T+T)(YY)
 - = (YY)(YY)
 - · (YY)(gg)
 - via Spin-1 Bosons (Z')
 - (l+l-)(l+l-)
 - (I+I-)(qq
- 3. $h \rightarrow 2 \rightarrow (3)+(3)$ or (2+1)(2+1)
 - via Bosons

Decays to Standard Objects With Missing Energy (except for that from b's, c's, tau's)


- 1. $h \rightarrow 0$
 - MET (Invisible decay)
- 2. $h \rightarrow 2 \rightarrow 1+0$
 - γ + MET
- 3. $h \rightarrow 2 \rightarrow 2 + 0$
 - via Spin-0 Bosons (S)
 - (bb) + MET
 - (τ⁺τ⁻) + MET
 - (μ+μ) + MET
 - (γγ) + MET
 - via Spin-1 Bosons (Z')
 - (1+1-) + MET
 - via Spin-1/2 Fermions
 - YY + MET
 - [yy] + MET
 - [/+/-] + MET

Decays to Standard Objects With Missing Energy (except for that from b's, c's, tau's)

purely visible or purely MET: familiar to us



Decays to Standard Objects Without Missing Energy

1.	$h \rightarrow 2 \rightarrow (2)+(1)$
	$\mathbf{v} + Z$

- + y + Z'
- 2. $h \rightarrow 2 \rightarrow (2)+(2)$
 - via Spin-0 Bosons (S)
 - (bb)(bb)
 - (bb)(τ⁺τ)
 - (bb)(µ+µ)
 - (τ⁺τ⁻)(μ⁺μ⁻)
 - (bb)(YY)
 - (T+T)(YY)
 - · (YY)(YY)
 - · (YY)(gg)
 - via Spin-1 Bosons (Z')
 - (l+l-)(l+l-)
 - (I+I-)(qq
- 3. $h \rightarrow 2 \rightarrow (3)+(3)$ or (2+1)(2+1)
 - via Bosons

Decays to Standard Objects With Missing Energy (except for that from b's, c's, tau's)

1

MET + visible : relatively less studied in the past

Decays to Standard Objects Without Missing Energy

- 1. $h \rightarrow 2 \rightarrow (2)+(1)$
 - γ+Z
 - γ+Ζ'
- 2. $h \rightarrow 2 \rightarrow (2)+(2)$
 - via Spin-0 Bosons (S)
 - (bb)(bb)
 - (bb)(τ⁺τ)
 - (bb)(µ⁺µ)
 - (τ⁺τ⁻)(μ⁺μ⁻)
 - (bb)(yy)
 - · (T+T)(YY)
 - = (YY)(YY)
 - · (YY)(gg)
 - via Spin-1 Bosons (Z')
 - (l+l-)(l+l-)
 - (l+l-)(qq
- 3. $h \rightarrow 2 \rightarrow (3)+(3)$ or (2+1)(2+1)
 - via Bosons

Decays to Standard Objects With Missing Energy (except for that from b's, c's, tau's)

- 1. $h \rightarrow 0$
 - MET (Invisible decay)
- 2. $h \rightarrow 2 \rightarrow 1+0$
- 3. $h \rightarrow 2 \rightarrow 2 + 0$
 - via Spin-0 Bosons (S)
 - (bb) + MET
 - (τ+τ) + MET
 - (μ⁺μ⁻) + MET
 - (γγ) + MET
 - via Spin-1 Bosons (Z')
 - (I+I-) + MET
 - via Spin-1/2 Fermions
 - YY + MET
 - [yy] + MET
 - [/+/-] + MET

These possibilities can be implemented in many NP scenarios. For benchmark selection, we will mainly focus on the NMSSM

R-symmetry

- a1 is singlet-like and light pseudo-Goldstone boson of R-symmetry breaking.
- Singlet-like CP-even Higgs and singlinolike neutralino are typically not light

PQ-symmetry

 \boxtimes a_1 , h_1 (singlet-like) and χ_1 (singlinolike) can be simultaneously light

> [Draper, TL, Wagner, Wang and Zhang, Phys. Rev. Lett. 106 (2011)]

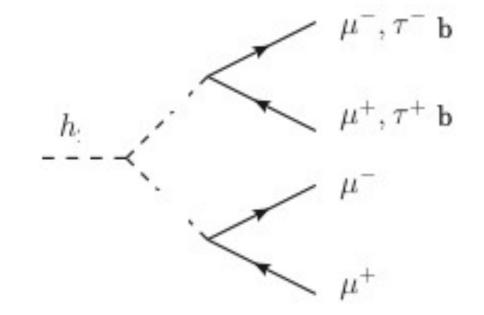
 $W_{NMSSM} = Y_U \mathbf{Q} \mathbf{H}_u \mathbf{U}^c - Y_D \mathbf{Q} \mathbf{H}_d \mathbf{D}^c - Y_E \mathbf{L} \mathbf{H}_d \mathbf{E}^c + \lambda \mathbf{N} \mathbf{H}_u \mathbf{H}_d + \frac{1}{3} \kappa \mathbf{N}^3$ $V_{soft} = m_{H_d}^2 |H_d|^2 + m_{H_u}^2 |H_u|^2 + m_N^2 |N|^2 - (\lambda A_\lambda H_u H_d N + \text{h.c.}) + \left(\frac{\kappa}{3} A_\kappa N^3 + \text{h.c.}\right)$

$$M_{H33}^2 \sim \kappa (A_{\kappa} + 4\kappa s)$$
$$M_{A22}^2 \sim -3\kappa A_{\kappa} s$$
$$M_{\chi_0 55} \sim 2\kappa s$$

🗵 R-symmetry: Al, Ak -> 0, k is not small

PQ-symmetry: k->0, Ak -> 0, Al is not small

[]


R-symmetry

PQ-symmetry

☑ h → a1a1 is typically significant

 \bowtie h -> a1a1, h1h1 are generically suppressed \bowtie h₂ → $\chi_1\chi_2$ can be significant!

[Dobrescu et al., Phys. Rev. D 63 (2001); Dermisek et al., Phys. Rev. Lett. 95 (2005)] [Draper, TL, Wagner, Wang and Zhang, Phys. Rev. Lett. 106 (2011)]

$$m_{h_1}^2 \approx -4v^2 \varepsilon^2 + \frac{4\lambda^2 v^2}{\tan^2 \beta} \Rightarrow \varepsilon^2 < \frac{\lambda^2}{\tan^2 \beta}$$

$$y_{h_{2}a_{1}a_{1}} = -\sqrt{2}\lambda\varepsilon\frac{m_{Z}v}{\mu} + \sum_{i=0}^{4}\mathcal{O}\left(\frac{\lambda^{4-i}}{\tan^{i}\beta}\right) ,$$

$$y_{h_{2}h_{1}h_{1}} = -\sqrt{2}\lambda\varepsilon\frac{m_{Z}v}{\mu} + 2\sqrt{2}v\varepsilon^{2} + \sum_{i=0}^{4}\mathcal{O}\left(\frac{\lambda^{4-i}}{\tan^{i}\beta}\right)$$

R-symmetry

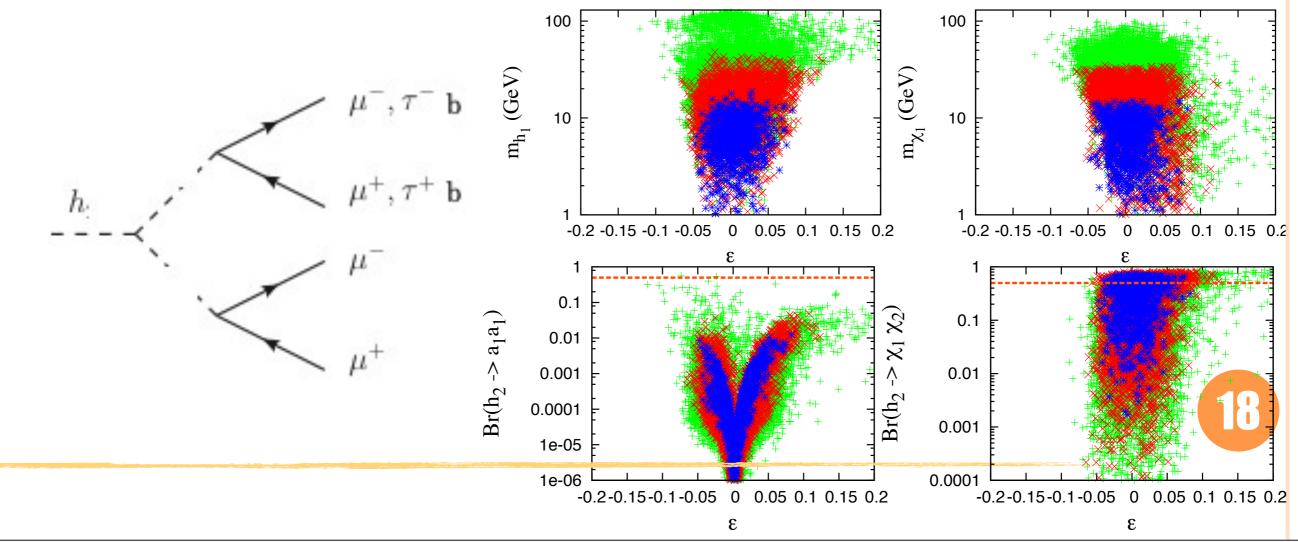

PQ-symmetry

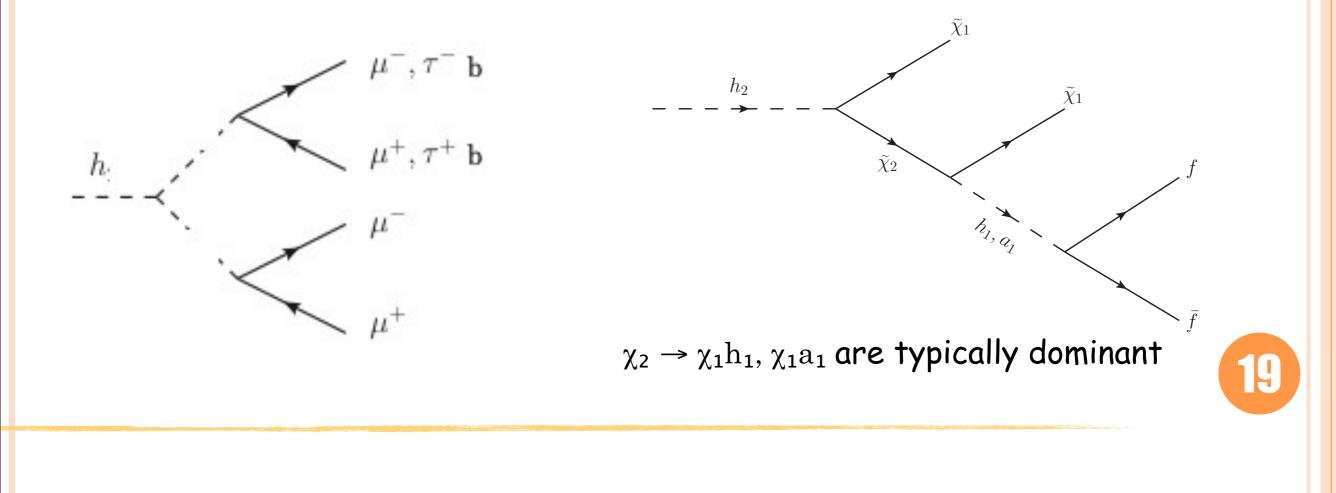
Image: Image:

☑ h -> a1a1, h1h1 are generically suppressed

 \boxtimes h₂ $\rightarrow \chi_1 \chi_2$ can be significant!

[Dobrescu et al., Phys. Rev. D 63 (2001); Dermisek et al., Phys. Rev. Lett. 95 (2005)] [Draper, TL, Wagner, Wang and Zhang, Phys. Rev. Lett. 106 (2011)]

R-symmetry


PQ-symmetry

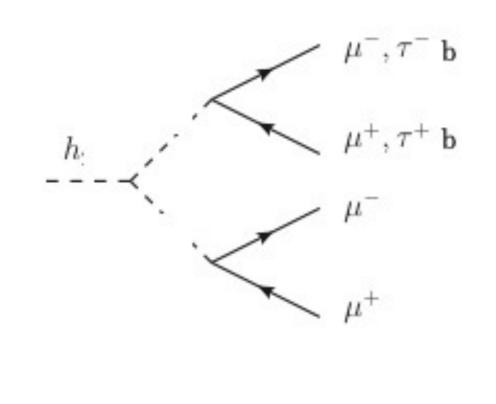
☑ h → a1a1 is typically significant

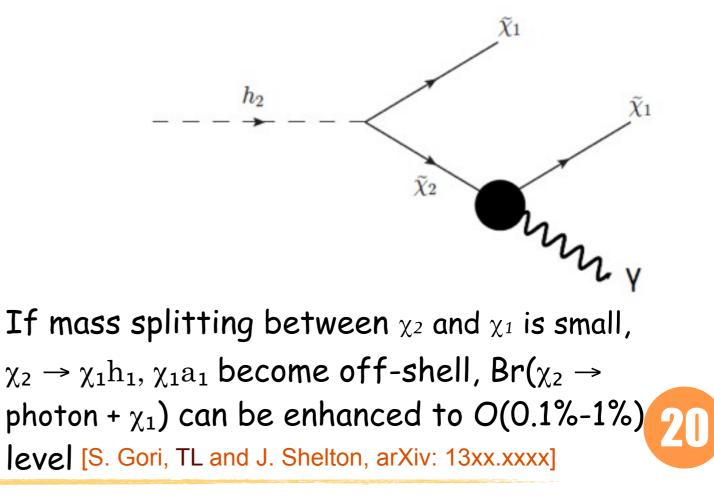
[Dobrescu et al., Phys. Rev. D 63 (2001); Dermisek et al., Phys. Rev. Lett. 95 (2005)] \boxtimes h -> a1a1, h1h1 are generically suppressed

 \boxtimes h₂ $\rightarrow \chi_1 \chi_2$ can be significant!

[Draper, TL, Wagner, Wang and Zhang, Phys. Rev. Lett. 106 (2011)]

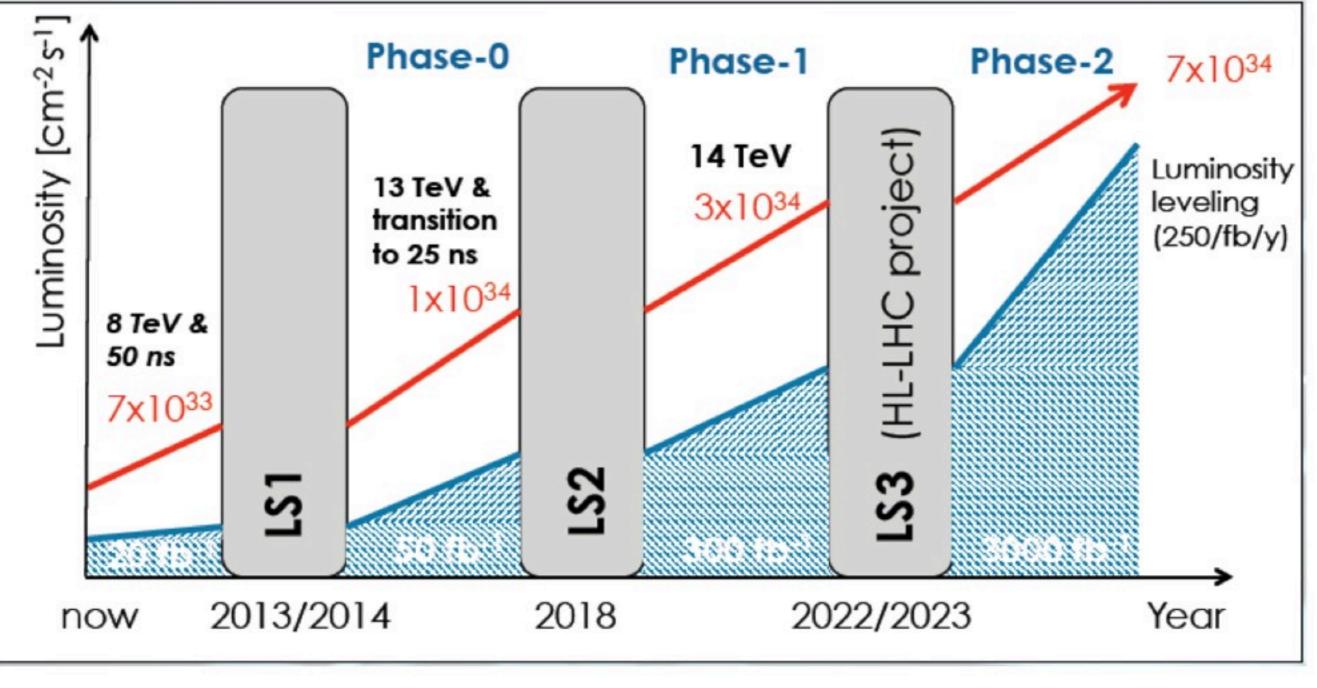
R-symmetry


PQ-symmetry

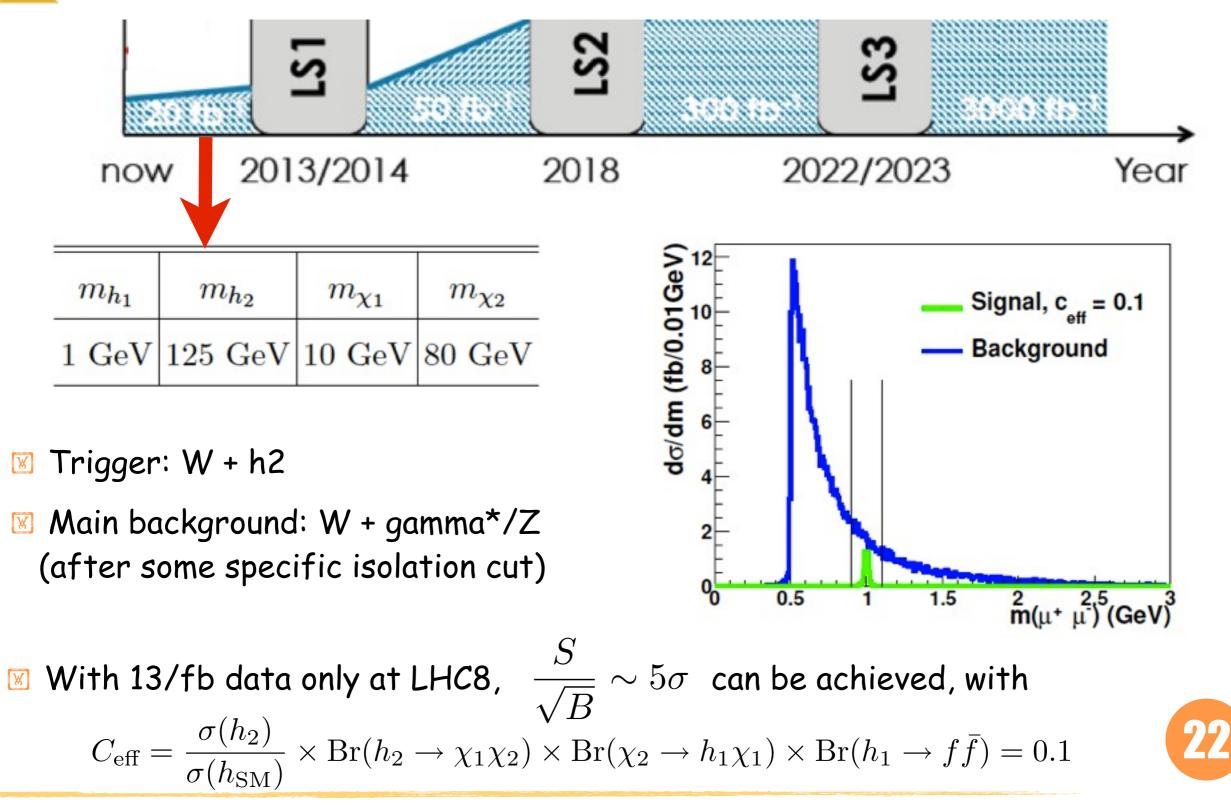

☑ h → a1a1 is typically significant

[Dobrescu et al., Phys. Rev. D 63 (2001); Dermisek et al., Phys. Rev. Lett. 95 (2005)] Image: March Alpha Al

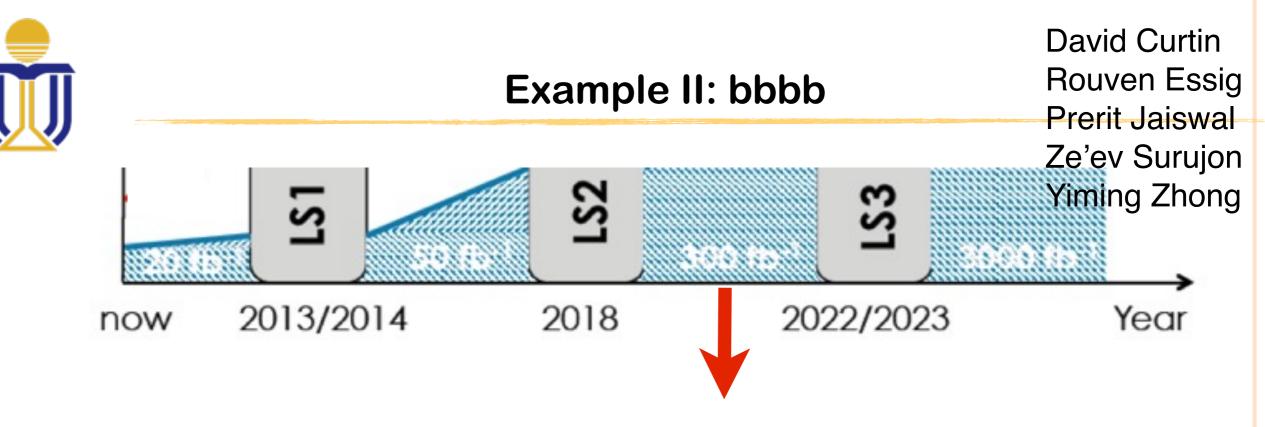
 \boxtimes h₂ $\rightarrow \chi_1 \chi_2$ can be significant!


[Draper, TL, Wagner, Wang and Zhang, Phys. Rev. Lett. 106 (2011)]

LHC Upgrade Plan


Many possibilities to explore during the whole LHC era. Next I will show some examples (preliminary results)

21

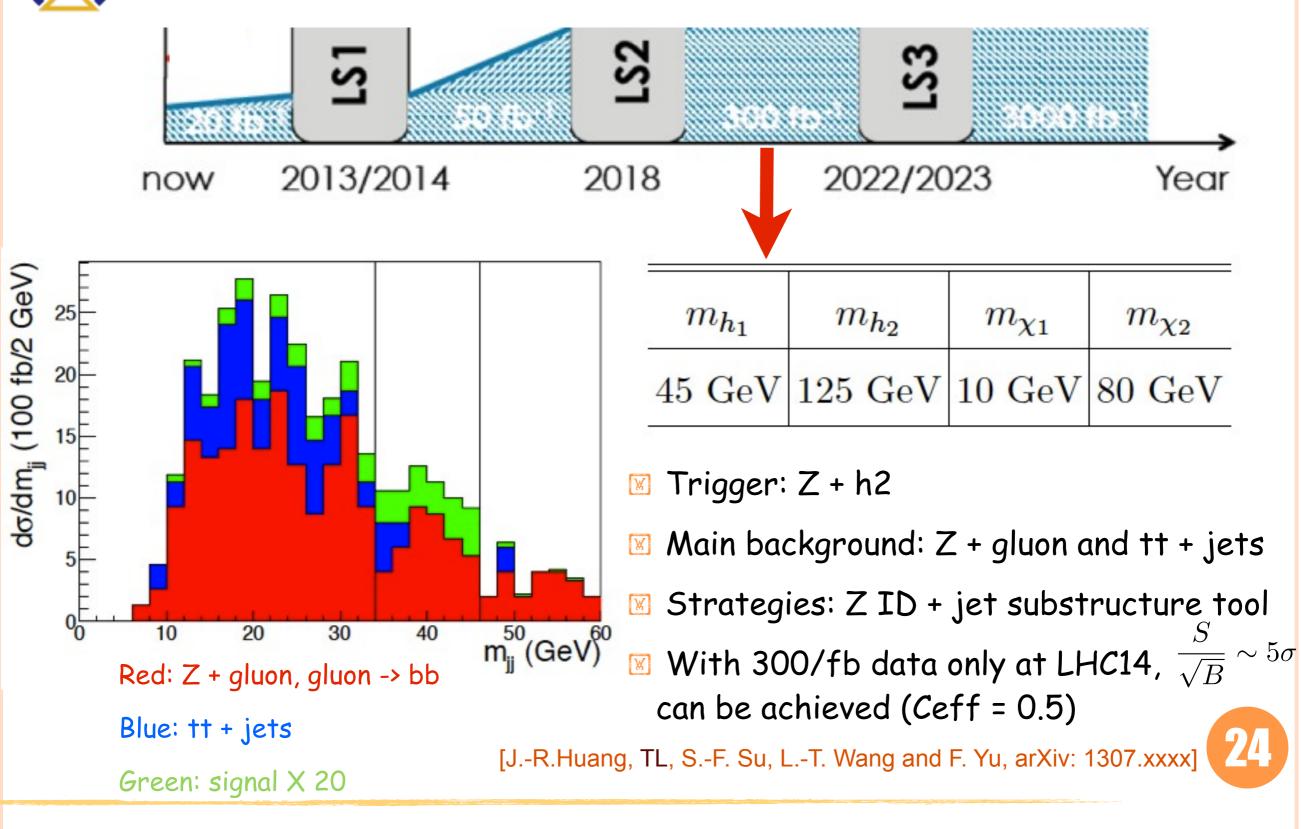


Example I: di-muon + MET

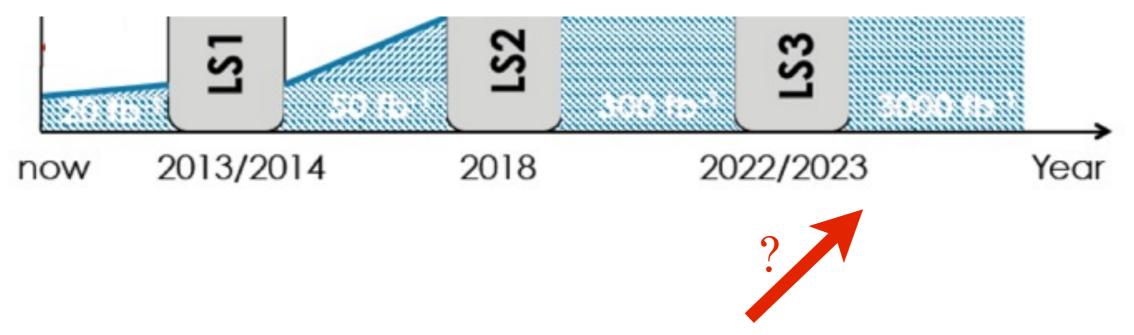
Stefania Gori, TL

[J.-R.Huang, TL, S.-F. Su, L.-T. Wang and F. Yu, arXiv: 1307.xxxx]

- 🗵 Trigger: Wh + Zh
- Strategies: work in the boost regime, apply jet substructure tool + 2b-tags
- For 100/fb data at LHC14 and Ceff = 1


$m_a({ m GeV})$	Signal	s/b	σ
20	1.9	2%	0.18
30	37.4	33%	3.49
40	63.1	55%	5.89
50	61.0	53%	5.69

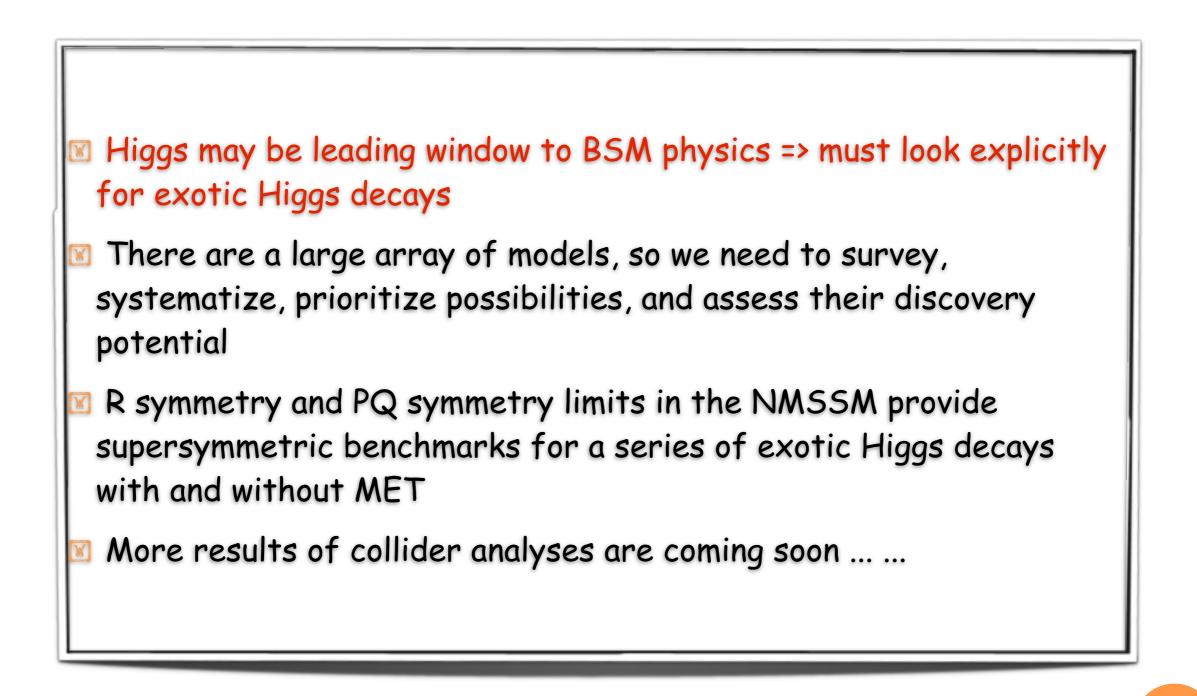
Carena, Han, Huang, Wagner (2007) Cheung, Song, Yan (2007) Kaplan, McEvoy (2011)


Example III: di-b + MET

TL

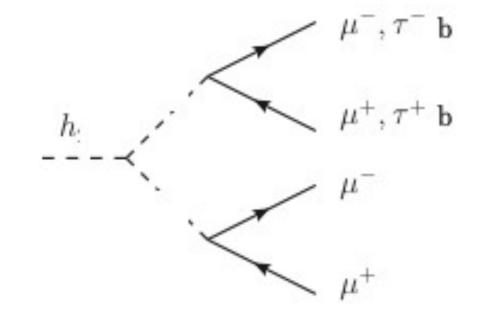
Exotic Higgs Decays at a Higgs Machine?

Difficult cases at the LHC:


- Soft light jets in the final state
- \boxtimes The BR of exotic Higgs decay is of O(%) level

Question: can a future Higgs factory play a role as a discovery machine?

Chris Potter will try to address this question in the next talk.


R-symmetry

PQ-symmetry

☑ h → a1a1 is typically significant

 \bowtie h -> a1a1, h1h1 are generically suppressed \bowtie h₂ → $\chi_1\chi_2$ can be significant!

[Dobrescu et al., Phys. Rev. D 63 (2001); Dermisek et al., Phys. Rev. Lett. 95 (2005)] [Draper, TL, Wagner, Wang and Zhang, Phys. Rev. Lett. 106 (2011)]

$$m_{h_1}^2 \approx -4v^2 \varepsilon^2 + \frac{4\lambda^2 v^2}{\tan^2 \beta} \Rightarrow \varepsilon^2 < \frac{\lambda^2}{\tan^2 \beta}$$

$$y_{h_{2}a_{1}a_{1}} = -\sqrt{2}\lambda\varepsilon\frac{m_{Z}v}{\mu} + \sum_{i=0}^{4}\mathcal{O}\left(\frac{\lambda^{4-i}}{\tan^{i}\beta}\right) ,$$

$$y_{h_{2}h_{1}h_{1}} = -\sqrt{2}\lambda\varepsilon\frac{m_{Z}v}{\mu} + 2\sqrt{2}v\varepsilon^{2} + \sum_{i=0}^{4}\mathcal{O}\left(\frac{\lambda^{4-i}}{\tan^{i}\beta}\right)$$

Z Boson Measurements (from PDG)

Z DECAY MODES	Fraction (Γ_i/Γ) Scale factor/ Confidence level	р (MeV/c)			C	Mdacauc	
e ⁺ e ⁻	(3.363 ±0.004)%	45594			51	M decays	
$\mu^+\mu^-$	(3.366 ±0.007) %	45594			• Wel	I measured	
$\tau^+ \tau^-$	(3.370 ±0.008) %	45559					
$\ell^+\ell^-$	[b] (3.3658±0.0023) %	-					
invisible	(20.00 ±0.06)%	-	$\Upsilon(1S) \times + \Upsilon(2S) \times$		(1.0 =	± 0.5) $\times 10^{-4}$	-
hadrons	(69.91 ±0.06)%	-	$+\Upsilon(3S) \times$				
$(u\overline{u}+c\overline{c})/2$	(11.6 ±0.6)%	-	$\Upsilon(1S)X$		< 4.4	$\times 10^{-5}$ CL=95%	-
$(d\overline{d}+s\overline{s}+b\overline{b})/3$	(15.6 ±0.4)%	-	$\Upsilon(2S)X$		< 1.39	$\times 10^{-4}$ CL=95%	-
	$(12.03 \pm 0.21)\%$	-	$\Upsilon(3S)X$		< 9.4	$\times 10^{-5}$ CL=95%	-
<i>b</i> <u>b</u> <i>b</i> <u>b</u> <i>b</i> <u>b</u>	$(15.12 \pm 0.05)\%$	-	(D^0/\overline{D}^0) X		(20.7 =	±2.0)%	-
	$(3.6 \pm 1.3) \times 10^{-4}$	-	D [±] X		(12.2 =	±1.7)%	-
$\pi^{0}\gamma^{\gamma}$	< 1.1 % CL=95% $< 5.2 $ $\times 10^{-5}$ CL=95%	45594	D*(2010) [±] X			±1.3)%	-
$\eta\gamma$	$< 5.1 \times 10^{-5} CL=95\%$	45594	$D_{s1}(2536)^{\pm}X$			± 0.8) × 10 ⁻³	-
$\omega\gamma$	$< 6.5 \times 10^{-4} \text{ CL}=95\%$	45592	$D_{sJ}(2573)^{\pm}X$			± 2.2) × 10 ⁻³	-
$\eta'(958)\gamma$	$< 4.2 \times 10^{-5} \text{ CL}=95\%$	45589	D*′(2629)±X		searched for		-
$\gamma\gamma$	$< 5.2 \times 10^{-5} CL=95\%$	45594	B^+X			±0.13)%	-
$\gamma\gamma\gamma$	$< 1.0 \times 10^{-5} CL=95\%$	45594	$B_s^0 X$			±0.13)%	-
$\pi^{\pm}W^{\mp}$	$[h] < 7 \times 10^{-5} \text{ CL}=95\%$	10162	$B_c^+ X$		searched for		-
$ ho^{\pm}W^{\mp}$	$[h] < 8.3 \times 10^{-5} \text{ CL}=95\%$	10136	$\Lambda_c^+ X \equiv_c^0 X$		(1.54 =	±0.33)%	-
$J/\psi(1S)X$	(3.51 $^{+0.23}_{-0.25}$) \times 10 ⁻³ S=1.1	-	$\Xi_{c}^{0}X$		seen		-
ψ(2 <i>S</i>)Χ	$(1.60 \pm 0.29) \times 10^{-3}$	_	$\Xi_b X$		seen	0.00 1.00	-
$\chi_{c1}(1P)X$	$(2.9 \pm 0.7) \times 10^{-3}$	-	b-baryon X			± 0.22)% $\times 10^{-3}$ CL=95%	-
$\chi_{c2}(1P)X$	$< 3.2 \times 10^{-3} CL=90\%$	-	anomalous γ + hadrons $e^+e^-\gamma$		[j] < 3.2 [j] < 5.2	× 10 ° CL=95%	45594
			$u^+u^-\gamma$		[j] < 5.2 [j] < 5.6	$\times 10^{-4}$ CL=95%	45594
			$\tau^{\mu} \tau^{\mu} \tau^{-} \gamma$		[j] < 7.3	$\times 10^{-4}$ CL=95%	45559
Rare and non	Rare and non-standard decays				[k] < 6.8	$\times 10^{-6}$ CL=95%	-
	•		$\ell^+\ell^-\gamma\gamma$ $q\overline{q}\gamma\gamma$		[k] < 5.5	$\times 10^{-6}$ CL=95%	-
limits	but could have -		$\nu\overline{\nu}\gamma\gamma$		[k] < 3.1	$\times 10^{-6}$ CL=95%	45594
		$e^{\pm}\mu^{\mp}$	LF	[h] < 1.7	$\times 10^{-6}$ CL=95%	45594	
something amazing		$e^{\pm}\tau^{\mp}$	LF	[h] < 9.8	$\times 10^{-6}$ CL=95%	45576	
			$\mu^{\pm} \tau^{\mp}$	LF	[h] < 1.2	$\times 10^{-5}$ CL=95%	45576
			pe	L,B	< 1.8	$\times 10^{-6}$ CL=95%	45589
			ρμ	L,B	< 1.8	$\times 10^{-6}$ CL=95%	45589