Higgs Coupling Measurements and BSM Sensitivity at a High-Luminosity LHC with ATLAS

Eric Feng

Argonne National Laboratory

Snowmass Energy Frontier Workshop University of Washington, Seattle
July 2, 2013

Introduction

- Measured Higgs couplings with combination of all decay channels ($\gamma\gamma$, ZZ, WW, $\tau\tau$, bb) using up to ~25 fb⁻¹ of data at sqrt(s) = 7 and 8 TeV
- ATLAS conference notes on Higgs coupling measurements:
 ATLAS-CONF-2013-034, ATLAS-CONF-2012-127
- Couplings consistent with SM-like Higgs boson within large uncertainties
 - Small deviations in couplings predicted by BSM models like two-Higgs-doublet model e.g. MSSM, an additional EW singlet, and dark matter
- Snowmass goals:
 - Derive expected precision on Higgs couplings with 300 and 3000 fb⁻¹ at 14 TeV
 - Translate into sensitivity to various BSM scenarios
- New ATLAS results in final stages of Collaboration approval
 - Illustrate here with existing public ATLAS results and schematic examples

Framework to probe couplings

- Define signal strength $\mu = (\sigma^*BR)/(\sigma^*BR)_{SM}$
 - Similarly for each coupling g_i , measure strength in "units" of SM value: $\kappa_i = g_i/g_{i.SM}$
- Scale each production or decay mode i by $\kappa_i^2 = g_i^2/g_{i,SM}^2$
- Scale total width by κ_{H}^{2}

LHC HXSWG (arXiv:1209.0040)

coupling to gluons)

$$^{\sim} \kappa_{\gamma}^{2} = |1.28 \kappa_{W} - 0.28 \kappa_{t} + ...|^{2}$$

(W and top interfere in loop coupling to photons)

Example:

$$(\sigma \cdot \mathrm{BR}) (\mathrm{gg} \to \mathrm{H} \to \gamma \gamma) = \sigma_{\mathrm{SM}} (\mathrm{gg} \to \mathrm{H}) \cdot \mathrm{BR}_{\mathrm{SM}} (\mathrm{H} \to \gamma \gamma) \cdot \frac{\kappa_{\mathrm{g}}^{2} \cdot \kappa_{\gamma}^{2}}{\kappa_{\mathrm{H}}^{2}}$$

$$\kappa_{\mathrm{H}}^{2} (\kappa_{i}, m_{\mathrm{H}}) = \sum_{\substack{j = \mathrm{WW}^{(*)}, \, \mathrm{ZZ}^{(*)}, \, \mathrm{b}\overline{\mathrm{b}}, \, \tau^{-}\tau^{+}, \\ \gamma \gamma, \, \mathrm{Z}\gamma, \, \mathrm{gg}, \, \mathrm{t}\overline{\mathrm{t}}, \, \mathrm{c}\overline{\mathrm{c}}, \, \mathrm{s}\overline{\mathrm{s}}, \, \mu^{-}\mu^{+}}} \frac{\Gamma_{j} (\kappa_{i}, m_{\mathrm{H}})}{\Gamma_{\mathrm{H}}^{\mathrm{SM}} (m_{\mathrm{H}})}$$

Higgs couplings with current data

Higgs couplings with current data

Input channels for HL-LHC

- Expected precision with 300 & 3000 fb⁻¹
 @ 14 TeV studied by Eur. Strategy group
 - ATL-PHYS-PUB-2012-004
- Parametrized detector inefficiencies and resolutions to model object performance with higher pileup
 - Up to 150 simultaneous *pp* interactions
- Further improvements in H->γγ, ZZ, WW, and ττ final states
 - bb not included due to heavy dependence on b-tagging performance and JER
- Expected measurement precision with 300 & 3000 fb⁻¹ @ 14 TeV on Higgs
 - Signal strengths, $\mu_{i,}$ and partial widths, Γ_{i} (proportional to squared coupling constants)
 - Hashed areas indicate theoretical uncertainties
 - No assumptions on Higgs total width (BSM)

ATLAS Preliminary (Simulation) $\sqrt{s} = 14 \text{ TeV}: \int Ldt = 300 \text{ fb}^{-1}; \int Ldt = 3000 \text{ fb}^{-1}$ Ldt=300 fb⁻¹ extrapolated from 7+8 TeV $H\rightarrow \mu\mu$ $ttH,H\rightarrow \mu\mu$ VBF,H→ττ $H \rightarrow ZZ$ $VBF,H\rightarrow WW$ $H \rightarrow WW$ $VH,H\rightarrow\gamma\gamma$ $ttH,H\rightarrow\gamma\gamma$ $VBF,H\rightarrow\gamma\gamma$ $H \rightarrow \gamma \gamma (+j)$ $H \rightarrow \gamma \gamma$ 0.2 0.4 0.6 0.8

Coupling prospects at HL-LHC

- Uncertainties on ratios of couplings will decrease to as low as ~5% with 300 fb⁻¹ at 14 TeV, and as low as couple percent with 3000 fb⁻¹ at HL-LHC
- Γ_{γ} / Γ_{Z} provides constraint on new physics in H-> $\gamma\gamma$ loop to couple level at 3000 fb⁻¹
- 25% precision on Γ_{τ} / Γ_{μ} probes couplings of 2nd and 3rd generation fermions

ATLAS Preliminary (Simulation)

Coupling prospects at HL-LHC

- Precision on ratios of couplings
 - No interpretation: identical to official ATLAS numbers
 - No assumption on Higgs total width, which cancels out in ratios of couplings
- Very conservative results as experimental systematic uncertainties are treated as uncorrelated between different channels
 - Saturate the performance at high luminosity, whereas in reality will partially cancel and result in further improvement in performance
- Correlations in theoretical uncertainties between channels are included

Model	300 fb ⁻¹	3000 fb ⁻¹
κ_{w}/κ_{z}	12%	11%
$\kappa_{t/}\kappa_{g}$	26%	11%
κ_{b}/κ_{Z}	N/A	N/A
$\kappa_{\tau/}\kappa_{Z}$	21%	10%
κ_{μ}/κ_{Z}	22%	7%
κ_{g}/κ_{Z}	26%	14%
$\kappa_{\gamma}/\kappa_{Z}$	5%	1%
$\kappa_{g} \; \kappa_{Z} / \kappa_{H}$	8%	7%
$\kappa_{\tau}/\kappa_{\mu}$	33%	12%

- Improvement in this area would also be critical for further progress
- For perspective, even more conservative than CMS Scenario 1
 - Consistent numbers if use more optimistic (realistic) assumptions

Uncertainties on couplings

- Uncertainties on couplings determined for many benchmark models
 - Some have simplifying assumptions, e.g. (k_V, k_F)
 - Others are fully general no simplifications: $(\kappa_{z}, \kappa_{w}, \kappa_{t}, \kappa_{b}, \kappa_{\tau}, \kappa_{u}, \kappa_{g}, \kappa_{\gamma})$
- Results in final stages of ATLAS approval process
 - Expected to become public as ATLAS PUB note within couple weeks
 - Will also be included in ATLAS white paper

ATLAS NOTE

ATL-PHYS-PUB-2013-XXX

Higgs Couplings Precision and Sensitivity to New Phenomena with the ATLAS Detector at a High-Luminosity LHC

The ATLAS Collaboration

Higgs couplings precision at 14 TeV

- Parametrizations studied assuming BR_{inv}=0
 - Ratios also probed without assumption
- First with photon and gluon rates expressed as rescaled loops of above couplings
- Overall coupling strength
- Vector bosons vs. fermions to probe quadratic vs. linear mass dependence
- Gauge sector
 - W vs. Z bosons to test custodial symmetry
- Yukawa sector
 - Up-type vs. down-type fermions to test Type II 2HDMs, e.g. MSSM
 - Leptons vs. quarks to test
 Type III and IV 2HDMs
 - Muons vs. taus to test 2nd vs. 3rd generation fermions
- General 6-dimensional fit to all couplings to massive particles (κ_b not determined)

Coupling	300 fb ⁻¹	3000 fb ⁻¹
К		
KŲ		
κ_F		
KZ		
λ_{WZ}	7	
κ_F		
KŲ		
κ_u		
λ_{du}		
KŲ		
К3		
λ_{23}		
κ_{Z}	1	
κ_W		
κ_t		
κ_b		
$\kappa_{ au}$		
κ_{μ}		

Higgs couplings precision at 14 TeV

- Also perform fits with effective loop couplings to gluons and photons
 - More model-independent because absorb arbitrary contributions from new diagrams from BSM phenomena
- Simplified probe of vector vs. fermion couplings, but with effective loop couplings
- General 8-dimensional fit of all couplings to massive and massless particles
 - κ_h not determined
- Since ATLAS update not available yet, provide in following slides personal (i.e. my own) interpretation of public ATLAS results for illustrative purposes
 - Actual ATLAS results not determined by such simplified reasoning, but rather using full-blown fits

Coupling	300 fb^{-1}	3000 fb^{-1}
KV		
κ_F		
κ_g		
κ_g κ_γ		
KZ		
κ_W		
κ_t		
κ_b		
$\kappa_{ au}$		
κ_{μ}		
K_g K_{γ}		
κ_{γ}		

W and Z couplings

- Disclaimer: Personal interpretation of public ATLAS results
- W and Z coupling precisions are similar at 300 fb⁻¹
 - Experimental and statistical uncertainties uncorrelated so divide by sqrt(2)
- W performance saturates at 3000 fb⁻¹ (treated very conservatively), while Z coupling precision expected to further improve wrt W coupling shown

Model	300 fb ⁻¹	3000 fb ⁻¹
$\kappa_{\rm w}/\kappa_{\rm z}$	12%	11%
$\kappa_{t/}\kappa_{g}$	26%	11%
κ_{b}/κ_{Z}	N/A	N/A
$\kappa_{ au/\kappa_{ extsf{Z}}}$	21%	10%
κ_{μ}/κ_{z}	22%	7%
κ_{g}/κ_{Z}	26%	14%
$\kappa_{\gamma}/\kappa_{Z}$	5%	2%
$\kappa_{\rm g} \kappa_{\rm Z} / \kappa_{\rm H}$	8%	7%

Model	300 fb ⁻¹	3000 fb ⁻¹
κ_{w}	8.5%	8%
$\kappa_{t/}\kappa_{g}$	26%	11%
κ_{b}/κ_{Z}	N/A	N/A
$\kappa_{ au/\kappa_{ extsf{Z}}}$	21%	10%
$\kappa_{\mu/}\kappa_{z}$	22%	7%
κ_{g}/κ_{Z}	26%	14%
$\kappa_{\gamma}/\kappa_{Z}$	5%	2%
$\kappa_{\rm g} \kappa_{\rm Z} / \kappa_{\rm H}$	8%	7%

Top quark coupling

- Disclaimer: Personal interpretation of public ATLAS results
- Top coupling from ttH($\gamma\gamma$, $\mu\mu$) is statistically limited at 300 fb⁻¹
 - Systematics become relevant at 3000 fb⁻¹
 - In both scenarios, top-quark uncertainty dominates that on gluon (ggF)
- Additional ttH with decays to WW, bb, etc under study but not included here

Model	300 fb ⁻¹	3000 fb ⁻¹
K_{w}/K_{z}	12%	11%
(κ_{t}/κ_{g})	26%	11%
κ_{b}/κ_{Z}	N/A	N/A
$\kappa_{ au/\kappa_{ extsf{Z}}}$	21%	10%
κ_{μ}/κ_{Z}	22%	7%
κ_{g}/κ_{Z}	26%	14%
$\kappa_{\gamma}/\kappa_{Z}$	5%	2%
$\kappa_{\rm g} \kappa_{\rm Z} / \kappa_{\rm H}$	8%	7%

Model	300 fb ⁻¹	3000 fb ⁻¹
$\kappa_{\sf w}$	8.5%	8%
κ_{t}	26%	11%
κ_{b}/κ_{Z}	N/A	N/A
$\kappa_{ au/\kappa_{ extsf{Z}}}$	21%	10%
κ_{μ}/κ_{Z}	22%	7%
κ_{g}/κ_{Z}	26%	14%
$\kappa_{\gamma}/\kappa_{Z}$	5%	2%
$\kappa_{g}\kappa_{\mathrm{Z}}/\kappa_{\mathrm{H}}$	8%	7%

b-quark coupling

- Disclaimer: Personal interpretation of public ATLAS results
- No sensitivity projections given for H->bb
 - Studies of b-jet performance and sensitivity in boosted regime on-going
 - May provide an update by ECFA in October, but unlikely for Snowmass
- BR(Γ ->bb) ~ 57% for SM Higgs so important for absolute couplings

Model	300 fb ⁻¹	3000 fb ⁻¹
κ_{w}/κ_{z}	12%	11%
$\kappa_{t/}\kappa_{g}$	26%	11%
κ_{b}/κ_{z}	N/A	N/A
$\kappa_{ au/\kappa_{ extsf{Z}}}$	21%	10%
κ_{μ}/κ_{z}	22%	7%
κ_{g}/κ_{Z}	26%	14%
$\kappa_{\gamma}/\kappa_{Z}$	5%	2%
$\kappa_{g} \kappa_{\mathrm{Z}} / \kappa_{\mathrm{H}}$	8%	7%

Model	300 fb ⁻¹	3000 fb ⁻¹
$\kappa_{\sf w}$	8.5%	8%
κ_{t}	26%	11%
κ_{b}	N/A	N/A
κ_{τ}/κ_{Z}	21%	10%
κ_{μ}/κ_{Z}	22%	7%
κ_{g}/κ_{Z}	26%	14%
$\kappa_{\gamma}/\kappa_{Z}$	5%	2%
$\kappa_{\rm g} \kappa_{\rm Z} / \kappa_{\rm H}$	8%	7%

Tau coupling

- Disclaimer: Personal interpretation of public ATLAS results
- Tau precision dominates ratio of tau and Z couplings
 - Precision on H->tautau signal strength about 50% better than H->ZZ, not including additional power for Z coupling from VBF and ZH

Model	300 fb ⁻¹	3000 fb ⁻¹
$\kappa_{w/}\kappa_{z}$	12%	11%
$\kappa_{t/}\kappa_{g}$	26%	11%
κ_{b}/κ_{Z}	N/A	N/A
κ_{τ}/κ_{z}	21%	10%
κ_{μ}/κ_{Z}	22%	7%
κ_{g}/κ_{Z}	26%	14%
$\kappa_{\gamma}/\kappa_{Z}$	5%	2%
$\kappa_{\rm g} \kappa_{\rm Z} / \kappa_{\rm H}$	8%	7%

Model	300 fb ⁻¹	3000 fb ⁻¹
$\kappa_{\sf w}$	8.5%	8%
κ_{t}	26%	11%
κ_{b}	N/A	N/A
κ_{τ}	21%	10%
κ_{μ}/κ_{Z}	22%	7%
κ_{g}/κ_{Z}	26%	14%
$\kappa_{\gamma}/\kappa_{Z}$	5%	2%
$\kappa_{\rm g} \kappa_{\rm Z} / \kappa_{\rm H}$	8%	7%

Muon coupling

- Disclaimer: Personal interpretation of public ATLAS results
- Muon coupling is statistically limited and trivially dominates Z coupling precision
 - Precision on H->tautau signal strength about 50% better than H->ZZ, not including additional power for Z coupling from VBF and ZH

Model	300 fb ⁻¹	3000 fb ⁻¹
κ_{w}/κ_{z}	12%	11%
$\kappa_{t/}\kappa_{g}$	26%	11%
κ_{b}/κ_{Z}	N/A	N/A
$\kappa_{ au/\kappa_{ extsf{Z}}}$	21%	10%
κ_{μ}/κ_{z}	22%	7%
κ_{g}/κ_{Z}	26%	14%
$\kappa_{\gamma}/\kappa_{Z}$	5%	2%
$\kappa_{\rm g} \kappa_{\rm Z} / \kappa_{\rm H}$	8%	7%

Model	300 fb ⁻¹	3000 fb ⁻¹
$\kappa_{\sf w}$	8.5%	8%
κ_{t}	26%	11%
κ_{b}	N/A	N/A
$\kappa_{ au}$	21%	10%
κ_{μ}	22%	7%
κ_{g}/κ_{Z}	26%	14%
$\kappa_{\gamma}/\kappa_{Z}$	5%	2%
$\kappa_{\rm g} \kappa_{\rm Z} / \kappa_{\rm H}$	8%	7%

Gluon coupling

- Disclaimer: Personal interpretation of public ATLAS results
- Precision on gluon coupling in similar ballpark as Z coupling
 - Gluon coupling from gluon fusion high rate
 - Z coupling from ZZ fusion and ZH production lower rates but higher S/B

Model	300 fb ⁻¹	3000 fb ⁻¹
κ_{w}/κ_{z}	12%	11%
$\kappa_{t/}\kappa_{g}$	26%	11%
$\kappa_{b/}\kappa_{Z}$	N/A	N/A
$\kappa_{ au/\kappa_{ extsf{Z}}}$	21%	10%
$\kappa_{\mu/}\kappa_{Z}$	22%	7%
κ_{g}/κ_{Z}	26%	14%
$\kappa_{\gamma}/\kappa_{Z}$	5%	2%
$\kappa_{\rm g} \kappa_{\rm Z} / \kappa_{\rm H}$	8%	7%

Model	300 fb ⁻¹	3000 fb ⁻¹
$\kappa_{\sf w}$	8.5%	8%
κ_{t}	26%	11%
κ_{b}	N/A	N/A
$\kappa_{ au}$	21%	10%
κ_{μ}	22%	7%
$\kappa_{\rm g}$	18%	10%
$\kappa_{\gamma}/\kappa_{Z}$	5%	2%
$\kappa_{\rm g} \kappa_{\rm Z} / \kappa_{\rm H}$	8%	7%

Photon coupling

- Disclaimer: Personal interpretation of public ATLAS results
- Diphoton channel is most precise (1-jet & 2-jet) measured (even better than ZZ)
 - Fine resolution and smoothly falling background improves with luminosity
- For both $\gamma\gamma$ and ZZ, theoretical uncertainty is about 50% (75%) of total uncertainty at 300 (3000) fb⁻¹
 - Canceled in ratio of couplings, but would persist in absolute couplings

Model	300 fb ⁻¹	3000 fb ⁻¹	
κ_{w}/κ_{z}	12%	11%	
$\kappa_{t/}\kappa_{g}$	26%	11%	
$\kappa_{b/}\kappa_{Z}$	N/A	N/A	
$\kappa_{ au/\kappa_{ extsf{Z}}}$	21%	10%	
$\kappa_{\mu/}\kappa_{z}$	22%	7%	
κ_{g}/κ_{Z}	26%	14%	
$\kappa_{\gamma}/\kappa_{Z}$	5%	1%	
$\kappa_{\rm g} \kappa_{\rm Z} / \kappa_{\rm H}$	8%	7%	

Model	300 fb ⁻¹	3000 fb ⁻¹
$\kappa_{\sf w}$	8.5%	8%
κ_{t}	26%	11%
κ_{b}	N/A	N/A
$\kappa_{ au}$	21%	10%
κ_{μ}	22%	7%
κ_{g}	18%	10%
κ_{γ}	10%	4%
$\kappa_{g} \kappa_{Z} / \kappa_{H}$	8%	7%

Higgs coupling precision at HL-LHC

- Disclaimer: Personal interpretation of public ATLAS results
- Therefore arrive at crude table approximating expected ATLAS precision
 - Conservative but agrees with actual ATLAS results well within ~50%
- Precision on most couplings improves by around a factor of 2 with 3000 fb⁻¹
 - Z coupling not shown (extracted as ratio wrt Z) but also expected to improve
- Coupling precisions between roughly 5-10% can be attained with 3000 fb⁻¹

Model	300 fb ⁻¹	3000 fb ⁻¹
$\kappa_{\sf w}$	8.5%	8%
κ_{t}	26%	11%
κ_{b}	N/A	N/A
$\kappa_{ au}$	21%	10%
κ_{μ}	22%	7%
κ_{g}	18%	10%
κ_{γ}	10%	4%
$\kappa_{\text{g}} \kappa_{\text{Z}} / \kappa_{\text{H}}$	8%	7%

Motivation for BSM sensitivity

- Joint discussions between Higgs and New Physics working groups at BNL Snowmass Energy Frontier workshop (April 3-6)
- Plenary summary below by Snowmass Higgs WG conveners
 - Action item applies to both spin/CP and couplings

1) Two Higgs Doublet Models (2HDMs)

- Consider model with additional Higgs doublet
- Four types (I, II, III, IV) of two Higgs-doublet models satisfy Glashow-Weinberg condition
 - No tree-level flavor changing neutral currents
- Light Higgs couplings are function of two parameters:
 - Mixing angle α between neutral Higgses (h, H) Ratio of vacuum expectation values: $tan(\beta)=v_2/v_1$

e.g. N. Craig et al. <u>arXiv:1210.0559</u>

$y_{2\mathrm{HDM}}/y_{\mathrm{SM}}$	2HDM I	2HDM II	2HDM III	2HDM IV
hVV	$\sin(\beta - \alpha)$	$\sin(\beta - \alpha)$	$\sin(\beta - \alpha)$	$\sin(\beta - \alpha)$
hQu	$\cos \alpha / \sin \beta$			
hQd	$\cos \alpha / \sin \beta$	$-\sin \alpha/\cos \beta$	$\cos \alpha / \sin \beta$	$-\sin \alpha/\cos \beta$
hLe	$\cos \alpha / \sin \beta$	$-\sin \alpha/\cos \beta$	$-\sin \alpha/\cos \beta$	$\cos \alpha / \sin \beta$

Limits on 2HDM Type I

- Disclaimer: Schematic illustration with LHC-style detector (not ATLAS)
- Expected limits on 2HDM Type I with 300 (left) and 3000 (right) fb⁻¹ at 14 TeV
- Type I: "Fermiophobic" i.e. decreased fermion couplings for first Higgs doublet
 - SM decoupling limit at $cos(\beta \alpha) = 0$
 - Regions with -2 ln Λ > 6.0 excluded at 95% CL
- At "low" tan(β), reach in cos(β - α) improves by factor ~2 with 3000 fb⁻¹

Limits on 2HDM Type II

- Disclaimer: Schematic illustration with LHC-style detector (not ATLAS)
- Expected limits on 2HDM Type II with 300 (left) and 3000 (right) fb⁻¹ at 14 TeV
- Type II: "MSSM-like" i.e. two doublets couple separately to up & down-type
 - SM decoupling limit at $cos(\beta \alpha) = 0$
 - Regions with -2 ln Λ > 6.0 excluded at 95% CL
- At "low" tan(β), reach in cos(β - α) improves by factor ~2 with 3000 fb⁻¹

Limits on 2HDM Type III

- Disclaimer: Schematic illustration with LHC-style detector (not ATLAS)
- Expected limits on 2HDM Type III with 300 (left) and 3000 (right) fb⁻¹ at 14 TeV
- Type III: "Lepton-specific" i.e. lepton couplings inverted wrt Type I
 - SM decoupling limit at $cos(\beta-\alpha)=0$
 - Regions with -2 ln Λ > 6.0 excluded at 95% CL
- At "low" tan(β), reach in cos(β - α) improves by factor ~2 with 3000 fb⁻¹

Limits on 2HDM: Type IV

- Disclaimer: Schematic illustration with LHC-style detector (not ATLAS)
- Expected limits on 2HDM Type IV with 300 (left) and 3000 (right) fb⁻¹ at 14 TeV
- Type IV: "Flipped" i.e. lepton couplings flipped wrt Type II
 - SM decoupling limit at $cos(\beta-\alpha)=0$
 - Regions with -2 ln Λ > 6.0 excluded at 95% CL
- At "low" tan(β), reach in cos(β - α) improves by factor ~2 with 3000 fb⁻¹

2) Additional electroweak singlet

- BSM models could also include additional EW singlet: e.g. G. Pruna, T. Robens. <u>arXiv:1303.1150</u>
- Modifies all Higgs couplings by factor κ
 - Uncertainty on κ expected to decrease significantly from 300 to 3000 fb⁻¹
- Expected upper limit on coupling $\kappa' = \text{sqrt}(1 \kappa^2)$ to EW singlet improves proportionally to that on κ
 - Example below: 50% improvement on precision of Higgs κ with 3000 fb⁻¹ would bring a 50% improvement on the upper limit on EW singlet κ'

Ŋ

3) Higgs portal to dark matter / hidden sector

- "Higgs portal" model extends SM to include dark matter WIMP, with coupling to Higgs boson as additional DOF
 - e.g. Djouadi et al. <u>arXiv:1112.3299</u>.
- Higgs resonant decays to dark matter pairs if m_{DM} < 2 m_H
- Translate upper limit on invisible partial width into upper limit on Higgs coupling to WIMP as function of WIMP mass given either scalar, vector, or Majorana fermion:

where:

$$\beta_X = \sqrt{1 - 4M_X^2/m_h^2}$$

Limit on WIMP-Nucleon cross-section

- Convert to upper limit on WIMP-nucleon scattering cross-section (via Higgs exchange), which is proportional to invisible branching ratio, as function of WIMP mass
 - Form factor for Higgs coupling to nucleons, f_N, computed using lattice QCD

$$\begin{split} \sigma_{S-N}^{SI} &= \frac{\lambda_{hSS}^2}{16\pi m_h^4} \frac{m_N^4 f_N^2}{(M_S + m_N)^2} \,, \\ \sigma_{V-N}^{SI} &= \frac{\lambda_{hVV}^2}{16\pi m_h^4} \frac{m_N^4 f_N^2}{(M_V + m_N)^2} \,, \\ \sigma_{f-N}^{SI} &= \frac{\lambda_{hff}^2}{4\pi \Lambda^2 m_h^4} \frac{m_N^4 M_f^2 f_N^2}{(M_f + m_N)^2} \,, \end{split}$$

- Below half the Higgs mass, indirect limit from LHC far more stringent than direct searches in astroparticle experiments
 - HL-LHC would further extend these upper limits on the cross-section
 - For example, improvement of 50% precision of upper limit on invisible decays with 3000 fb⁻¹ would improve the upper limit on WIMP-nucleon cross-section by 50%

Conclusions

- ATLAS PUB note and white paper on expected gain at HL-LHC for Higgs coupling precision & indirect constraints on BSM physics will be public soon
- Higgs coupling uncertainties will (conservatively) decrease to as low as ~10% with 300 fb⁻¹ at 14 TeV, and as low as ~5% with 3000 fb⁻¹ at HL-LHC
 - Private interpretation here of existing public results
- Expected limits (and discovery reach) for various new phenomena can be significantly enhanced with higher luminosity:
 - <u>2HDM</u>: Reach in $cos(\beta-\alpha)$ and $tan(\beta)$ for types I-IV, including MSSM-like Type II, could be improved by roughly factor of 2
 - EW singlet: Upper limit on coupling κ' proportional to coupling precision
 - <u>Dark matter:</u> WIMP-nucleon cross-section upper limit better than limits from direct detection and improves proportionally with BR_{inv}
- Very conservative assumptions regarding projected detector performance (e.g. H->WW), and not including expected reductions in theory uncertainties
 - Improvements would scale expected limits correspondingly
- Higgs coupling precision and corresponding reach for new physics at HL-LHC comparable to those of Stage I at an ILC
 - HL-LHC is complementary and worthwhile investment given lower cost

Additional information

References (I)

- ATLAS Collaboration. "Combined coupling measurements of the new Higgs-like boson with the ATLAS detector using up to 25 fb-1 of pp collision data."
 <u>ATLAS-CONF-2013-034</u>, CERN. March 2013.
- ATLAS Collaboration. "Coupling properties of the new Higgs-like boson observed with the ATLAS detector at the LHC". <u>ATLAS-CONF-2012-127</u>, CERN. September 2012.
- ATLAS Collaboration. "Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC." Phys. Lett. B 716, 1 (2012).
- ATLAS Collaboration. "Physics at a High-Luminosity LHC with ATLAS (Update)". <u>ATL-PHYS-PUB-2012-004</u>, CERN. October 2012.
- ATLAS Collaboration. Physics at a High-Luminosity LHC with ATLAS. <u>ATL-PHYS-PUB-2012-001</u>, CERN.
- LHC Higgs Cross Section Working Group. "LHC HXSWG interim recommendations to explore the coupling structure of a Higgs-like particle." <u>arXiv:1209.0040</u> (2012).

References (II)

- CMS Collaboration. "Measurements of the properties of the new boson with a mass near 125 GeV." CMS-PAS-HIG-13-005, CERN. April 2013.
- CMS Collaboration. "Combination of Standard Model Higgs boson searches and measurements of the properties of the new boson with a mass new 125 GeV." <u>CMS-HIG-12-045</u>, CERN. November 2012.
- CMS Collaboration. "Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC". Phys. Lett. B 716, 30 (2012).
- CMS Collaboration. "CMS at the High Energy Frontier".
 http://indico.cern.ch/abstractDisplay.py/getAttachedFile?
 abstractId=144&resId=1&confId=175067
- M. J. Dolan, C. Englert, M. Spannowsky. "Higgs self-coupling measurements at the LHC". arXiv:1206.5001v2 (2012).
- U. Baur, T.Plehn, D, Rainwater. Probing the Higgs self-coupling at hadron colliders using rare decays, Phys. Rev. D69, O53004 (2004).

Spin and charge-parity

- New, neutral boson appears to have spin 0 and even CP
 - 2⁺ and 0⁻ hypotheses excluded at >95% CL, , but mixed parity not ruled out
 - Does not appear to be KK graviton, pure CP-odd A, etc.
- Consistent with a Higgs boson, but is it the SM Higgs?

Input data for ATLAS measurements

Higgs Boson Decay	Subsequent Decay	Sub-Channels	$\int L \mathrm{d}t$ [fb ⁻¹]	Ref.
		$2011 \sqrt{s} = 7 \text{ TeV}$		
$H \to ZZ^{(*)}$	4ℓ	$\{4e, 2e2\mu, 2\mu 2e, 4\mu, 2\text{-jet VBF}, \ell\text{-tag}\}$	4.6	[8]
$H \to \gamma \gamma$	_	10 categories $\{p_{\mathrm{Tt}} \otimes \eta_{\gamma} \otimes \text{conversion}\} \oplus \{2\text{-jet VBF}\}$	4.8	[7]
$H \to WW^{(*)}$	$\ell \nu \ell \nu$	$\{ee, e\mu, \mu e, \mu\mu\} \otimes \{0\text{-jet}, 1\text{-jet}, 2\text{-jet VBF}\}$	4.6	[9]
	$ au_{ m lep} au_{ m lep}$	$\{e\mu\} \otimes \{0\text{-jet}\} \oplus \{\ell\ell\} \otimes \{1\text{-jet}, 2\text{-jet}, p_{T,\tau\tau} > 100 \text{ GeV}, VH\}$	4.6	
$H \to \tau \tau$	$ au_{ m lep} au_{ m had}$	$\{e, \mu\} \otimes \{0\text{-jet}, 1\text{-jet}, p_{T,\tau\tau} > 100 \text{ GeV}, 2\text{-jet}\}$	4.6	[10]
$H \rightarrow t t$	$ au_{ m had} au_{ m had}$	{1-jet, 2-jet}	4.6	
	$Z \rightarrow \nu \nu$	$E_{\rm T}^{\rm miss} \in \{120 - 160, 160 - 200, \ge 200 \text{ GeV}\} \otimes \{2\text{-jet}, 3\text{-jet}\}\$	4.6	
$VH \rightarrow Vbb$	$W \to \ell \nu$	$p_{\mathrm{T}}^{\bar{W}} \in \{ < 50, 50 - 100, 100 - 150, 150 - 200, \ge 200 \text{ GeV} \}$	4.7	[11]
	$Z \to \ell \ell$	$p_{\mathrm{T}}^{\mathrm{Z}} \in \{ < 50, 50 - 100, 100 - 150, 150 - 200, \ge 200 \text{ GeV} \}$	4.7	
		$2012 \sqrt{s} = 8 \text{ TeV}$		
$H \to ZZ^{(*)}$	4ℓ	$\{4e, 2e2\mu, 2\mu 2e, 4\mu, 2\text{-jet VBF}, \ell\text{-tag}\}\$	20.7	[8]
$H \to \gamma \gamma$	-	14 categories $\{p_{\mathrm{Tt}} \otimes \eta_{\gamma} \otimes \text{conversion}\} \oplus \{2\text{-jet VBF}\} \oplus \{\ell\text{-tag}, E_{\mathrm{T}}^{\mathrm{miss}}\text{-tag}, 2\text{-jet VH}\}$	} 20.7	[7]
$H \to WW^{(*)}$	$\ell \nu \ell \nu$	$\{ee, e\mu, \mu e, \mu\mu\} \otimes \{0\text{-jet}, 1\text{-jet}, 2\text{-jet VBF}\}$	20.7	[9]
	$ au_{ m lep} au_{ m lep}$	$\{\ell\ell\} \otimes \{1\text{-jet}, 2\text{-jet}, p_{T,\tau\tau} > 100 \text{ GeV}, VH\}$	13	
И >	$ au_{ m lep} au_{ m had}$	$\{e, \mu\} \otimes \{0\text{-jet}, 1\text{-jet}, p_{T,\tau\tau} > 100 \text{ GeV}, 2\text{-jet}\}$	13	[10]
$H \to \tau \tau$	$ au_{ m had} au_{ m had}$	{1-jet, 2-jet}	13	
	$Z \rightarrow \nu \nu$	$E_{\rm T}^{\rm miss} \in \{120 - 160, 160 - 200, \ge 200 \text{ GeV}\} \otimes \{2\text{-jet}, 3\text{-jet}\}\$	13	
$VH \rightarrow Vbb$	$W \to \ell \nu$	$p_{\mathrm{T}}^{W} \in \{<50, 50 - 100, 100 - 150, 150 - 200, \ge 200 \text{ GeV}\}\$	13	[11]
	$Z \to \ell \ell$	$p_{\rm T}^{\rm Z} \in \{ < 50, 50 - 100, 100 - 150, 150 - 200, \ge 200 \text{ GeV} \}$	13	

Production modes

Coupling strengths for production modes

$$\frac{\sigma_{ggH}}{\sigma_{ggH}^{SM}} = \begin{cases} \kappa_g^2(\kappa_b, \kappa_t, m_H) \\ \kappa_g^2 \end{cases} \\
\frac{\sigma_{VBF}}{\sigma_{VBF}^{SM}} = \kappa_{VBF}^2(\kappa_W, \kappa_Z, m_H) \\
\frac{\sigma_{WH}}{\sigma_{WH}^{SM}} = \kappa_W^2 \\
\frac{\sigma_{ZH}}{\sigma_{ZH}^{SM}} = \kappa_Z^2 \\
\frac{\sigma_{t\bar{t}H}}{\sigma_{t\bar{t}H}^{SM}} = \kappa_t^2$$

Decay modes

Coupling strengths for decay modes and total width

$$\frac{\Gamma_{WW^{(*)}}}{\Gamma_{WW^{(*)}}^{SM}} = \kappa_{W}^{2}$$

$$\frac{\Gamma_{ZZ^{(*)}}}{\Gamma_{ZZ^{(*)}}^{SM}} = \kappa_{Z}^{2}$$

$$\frac{\Gamma_{b\bar{b}}}{\Gamma_{b\bar{b}}^{SM}} = \kappa_{b}^{2}$$

$$\frac{\Gamma_{\tau^{-\tau^{+}}}}{\Gamma_{\tau^{-\tau^{+}}}^{SM}} = \kappa_{\tau}^{2}$$

$$\frac{\Gamma_{\gamma\gamma}}{\Gamma_{\gamma\gamma}^{SM}} = \begin{cases} \kappa_{\gamma}^{2}(\kappa_{b}, \kappa_{t}, \kappa_{\tau}, \kappa_{W}, m_{H}) \\ \kappa_{\gamma}^{2} \end{cases}$$

$$\frac{\Gamma_{Z\gamma}}{\Gamma_{Z\gamma}^{SM}} = \begin{cases} \kappa_{(Z\gamma)}^{2}(\kappa_{b}, \kappa_{t}, \kappa_{\tau}, \kappa_{W}, m_{H}) \\ \kappa_{(Z\gamma)}^{2} \end{cases}$$

$$\frac{\Gamma_{t\bar{t}}}{\Gamma_{t\bar{t}}^{SM}} = \kappa_t^2$$

$$\frac{\Gamma_{gg}}{\Gamma_{gg}^{SM}} = \begin{cases} \kappa_{(H \to gg)}^2(\kappa_b, \kappa_t, m_H) \\ \kappa_g^2 \end{cases}$$

$$\frac{\Gamma_{c\bar{c}}}{\Gamma_{c\bar{c}}^{SM}} = \kappa_t^2$$

$$\frac{\Gamma_{s\bar{s}}}{\Gamma_{s\bar{s}}^{SM}} = \kappa_b^2$$

$$\frac{\Gamma_{\mu^-\mu^+}}{\Gamma_{\mu^-\mu^+}^{SM}} = \kappa_\tau^2$$

$$\frac{\Gamma_H}{\Gamma_{\mu^-\mu^+}^{SM}} = \kappa_\tau^2$$

$$\frac{\Gamma_H}{\Gamma_{\mu^-\mu^+}^{SM}} = \kappa_\tau^2$$

$$\frac{\Gamma_H}{\Gamma_{\mu^-\mu^+}^{SM}} = \kappa_\tau^2$$

Simplified benchmark models

- Probed 7 symmetries, each with and without Higgs total width fixed = 14 models:
 - Fewer DOF's gives greater statistical precision in combined fit
 - Primary goal is to test SM (null hypothesis)
 - Possible bias from model assumptions not important
- Benchmark models defined by LHC Higgs XS WG: arXiv:1209.0040

- κ_V vs. κ_F : Spin, vector bosons vs. fermions
- κ_W vs. κ_z: Custodial symmetry, W vs. Z boson
- κ_q vs. κ_l : Fermion flavor, quarks vs. leptons
- κ_u vs. κ_d : Fermion type, up vs. down
- κ_g vs. κ_v : Effective loop couplings for effects of heavy BSM particles
- κ_H & BR_{inv}: Allow decays to light invisible BSM particles
- More complex models, including some targeting top coupling, will be accessible at 300 and 3000 ${\rm fb}^{-1}$

Higgs couplings with current data

 Simplified model where couplings to weak vector bosons scaled by same strength:

$$\kappa_V = \kappa_W = g_W / g_{W,SM}$$

= $\kappa_Z = g_Z / g_{Z,SM}$
and separate strength for fermions:

$$\kappa_f = \kappa_t = \kappa_b = \kappa_\tau = \dots$$

- Assume no invisible decays
- Recast gluon & photon couplings with loops of scaled tree-level couplings (W, t, etc)
- Couplings compatible with SM Higgs within 2σ -- not radion, dilaton, etc
- Now repeat but giving W and Z boson couplings separate strengths
 - Independent of Higgs width
 - $\lambda_{WZ} = \kappa_W / \kappa_Z = 0.75 + /- 0.12$ consistent with SM within ~1.5 σ
 - No significant violation of custodial symmetry observed
 - Indirect indication "Higgs-like" boson is EW doublet since λ_{wz} =0.5 for triplet

-2 ln $\Lambda(\lambda_{\rm WZ})$

Summary of ATLAS fit results

- Good agreement in most models
 - Note models are strongly correlated

LHC / High-lumi LHC schedule

- LHC schedule from Chamonix 2012
 - After LS3: ~140 collisions/bunch-crossing with luminosity-leveling
- Milestones:
 - 2022: 300 fb⁻¹
 - 2030: 3000 fb⁻¹

Theoretical uncertainties

Precisions at high lumi with and without theoretical uncertainties

Model	300 fb ⁻¹	3000 fb ⁻¹
λ_{Zg}	26 (24)%	14 (11)%
λ_{tg}	26 (24)%	11 (7)%
$\lambda_{ au\mu}$	33 (33)%	12 (11)%
$\lambda_{\mu Z}$	22 (22)%	7 (7)%
$\lambda_{\tau Z}$	21 (20)%	10 (9)%
$\lambda_{\sf wz}$	12 (12)%	11 (11)%
$\lambda_{_{\gammaZ}}$	5 (5)%	1.5 (1.5)%
κ_{gZ}	8 (5)%	7 (2.5)%