
Physics potential of a linear collider in Higgs physics

G. Moortgat-Pick
(Uni Hamburg/DESY)

What is the motivation?

- We have a Higgs! That's great.
- But does it really behave as Higgs/Brout/Englert want?
 Or are here hints for BSM?
- What are his talents and characters?
- Why is the Higgs so spectacular? Because that's the bridge between 'micro' and 'macro' cosmos.
- Which exp. set-ups are required to manifest its role?
- We have the LHC and the HL-LHC. That's great!
- Do we really also need the LC?
 - ...a great chance might just be ahead....

Very encouraging politics!

Possible Timeline

- July 2013
 - Non-political evaluation of 2 Japanese candidate sites complete, followed by down-selecting to one
- End 2013
 - Japanese government announces its intent to bid
- 2013~2015
 - Inter-governmental negotiations
 - Completion of R&Ds, preparation for the ILC lab.

2023

2030?

- ~2015
 - Inputs from LHC@14TeV, decision
- 2015~16
 - Construction begins (incl. biddin
- 2026~27
 - Commissioning

2015 □s=13~14 TeV, L~1x10³⁴ cm⁻² s⁻¹, bunch spacing 25 ns 2016 2017 Injector and LHC Phase-1 upgrade to full design luminosity 2018 LS2 2019 \Box s=14 TeV, L~2x10³⁴ cm⁻² s⁻¹, bunch spacing 25 ns 2020 2021 HL-LHC Phase-2 upgrade, IR, crab cavities? 2022 LS3

□s=14 TeV, L=5x10³⁴ cm⁻² s⁻¹, luminosity levelling

But is it justified by physics?

-350 fb-1

~3000 fb

LHC timeline

~75-100 fb

Preface

- Discovery of a SM-like Higgs around m_H~125 GeV
 - Is an absolute revolution!
 - Completely new type
 - Not clear whether a SM-Higgs

The properties of the Higgs boson, to be discovered at the LHC, must be thoroughly investigated in a good condition at the ILC'
(K. Kawagoe, Feb 12)

In short -- some LC capabilities:

As e.g. $\Delta m_{top} \sim 0.1$ GeV, $coup_{tth} \sim 5\%$ H: BR's ~ 1 (b)-7(c)% , $\Gamma_h \sim 3\%$, $\Delta \lambda \sim 18\%$, CP, mixed states

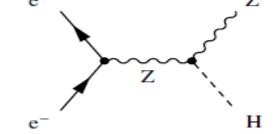
- Very active: many new LC studies and reports....
 - ILC TDR (since June 12, 2013)
 - CLIC CDR 2012
 - Collection of LC notes (DESY123h) online
 - 2 more LC reviews under work

Focus of my talk

(in p. 1st article in
Desy123h, 1210.0202)

The LC physics offer

A `staged' approach:


- $-\sqrt{s}$ =250 GeV, `Higgs cross section, mass + couplings'
- $-\sqrt{s}$ =350 GeV, `Higgs width + top mass'
- \sqrt{s} =500 GeV, `Special Higgs- and top couplings+BSM'
- (\sqrt{s} =91 GeV, `Precision frontier + indirect BSM frontier')
- √s≥1000 GeV, `Closing the Higgs picture? '
- High rates!

	250 GeV	350GeV	500 GeV	1 TeV	1.5 TeV	3 TeV
$\sigma(e^+e^- \rightarrow ZH)$	240 fb	129 fb	57 fb	13 fb	6 fb	1 fb
$\sigma(e^+e^- \rightarrow H\nu_e\overline{\nu}_e)$	8 fb	30 fb	75 fb	210 fb	309 fb	484 fb
Int. \mathcal{L}	$250{\rm fb^{-1}}$	$350 \mathrm{fb^{-1}}$	$500 \mathrm{fb^{-1}}$	$1000{\rm fb^{-1}}$	$1500{\rm fb^{-1}}$	$2000{\rm fb^{-1}}$
# ZH events	60,000	45,500	28,500	13,000	7,500	2,000
# $Hv_e\overline{v}_e$ events	2,000	10,500	37,500	210,000	460,000	970,000

- Plus `new' features:
 - Precise energy, threshold scans, polarization, $\gamma\gamma$ -option

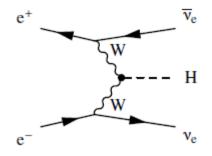
Higgs @ staged LC

- $\sqrt{s}=250$ GeV: dominant process
- Why crucial?

- allows model-independent access!
- Absolute measurement of Higgs cross section $\sigma(HZ)$ and g_{HZZ} : crucial input for all further Higgs measurements !

\sqrt{s}	250 GeV	
Int. \mathcal{L}	250 fb-1	_
$\Delta(\sigma)/\sigma$	2.5%	
$\Delta(g_{\rm HZZ})/g_{\rm HZZ}$	1.3%	Model independent!

- Reconstructed recoil mass distributions (eeX, μμΧ):
 ΔmH=32 MeV
- Model independent coupling measurement


- $\sqrt{s}=250$ GeV: HZ production ~350 fb with (-.8,+0.3)
 - Determination of couplings to c, b,g,τ

$\Delta(\sigma^*BR)/(\sigma^*BR)$	250 GeV/250 fb ⁻¹ P = (-0.8,+0,3)	350 GeV/250 fb ⁻¹ P = (-0.8,+0,3)		
H→bb	1.0%	1.0%	>factor 10 better than HL-LHC	
H→cc	6.9%	6.2%	LC unique	[H.Ono, A: Miyamoto]
H→gg	8.5%	7.3%	LC unique	EPJC (2013) 73
Н->тт	4.2%			

- Scaling factor: $\sigma_{pol}/\sigma_{unpol}\sim (1-0.151 P_{eff}) * L_{eff}/L$
- LC: unique sensitivity to invisible decay modes
 - Extending down to BR(inv) as low as 1%!
- Threshold scan:
 - Access to spin and CP-quantum numbers: O+, O- (see talk K. Krueger)
- Estimate: about 3 years running time needed on √s=250 GeV

Higgs width

- √s=350 GeV: Further improvement in Higgs couplings (see TDR)
- Access to Higgs total width :
 - Total width for mH=125 GeV: T_h^{tot} ~4 MeV!
 - Does need WW-fusion

$$\Delta T_h^{tot}/T_h^{tot}$$

250 GeV: 13%

350 GeV: ~7%

500 GeV: ~5-6%

1 TeV: ~ 4%

Scaling factor:

 $\sigma_{pol}/\sigma_{unpol}\sim (1-P_{eff})*L_{eff}/L$

 Higgs width crucial for absolute BR's, couplings and model discrimination!

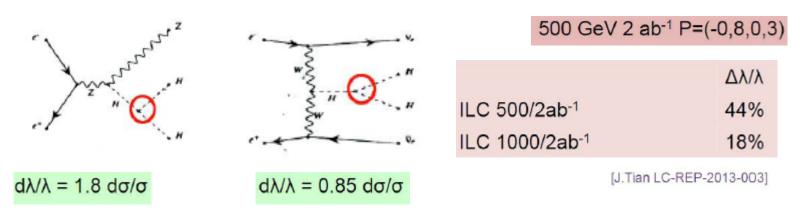
Higgs CP-state

- A priori: observed Higgs can be mixed CP-even/odd
- HVV SM-coupling: only sensitive to CP-even states
 - CP-odd admixtures enters only at loop-level
 - Same problem for LHC as for LC
- At √s=350 GeV: use angular distributions, involving fermion coupling:

 $\Delta \mathcal{L} = -\frac{m_{\tau}}{v} h \, \tau (\cos \alpha + i \sin \alpha \gamma^5) \tau$

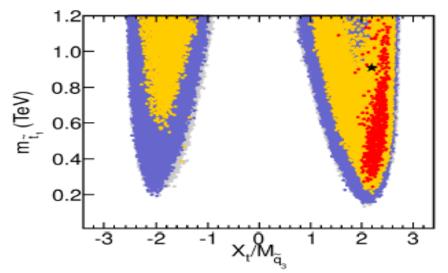
- Construct CP-odd observable
- Exploit T-decays: s-ps mixing-angle up to 6⁰
- At \sqrt{s} =500: threshold of ttH also unque for CP-mixing

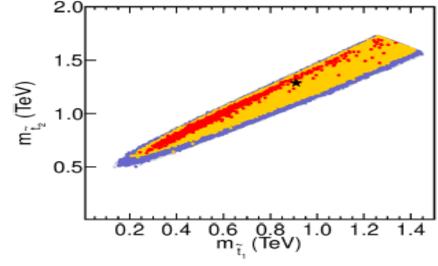
Top Yukawa coupling


- $\sqrt{s}=500$ GeV: top-Yukawa couplings:
 - At this energy: ttH is close to threshold
 - But thanks to threshold effects: σ enhancement by factor 2!
 - Key role in dynamics of ew symmetry-breaking
 - Yukawa couplings: g_{ttH}

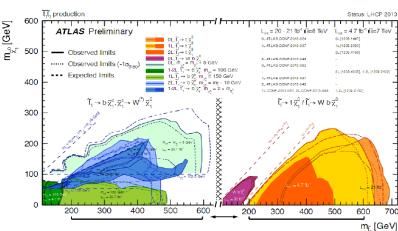
√s=1000 GeV: beats HL-LHC result by factor 2!

√s=500GeV: Trilinear Higgs couplings


- Very important for establishing Higgs mechanism!
 - LHC estimates:
 - about Δλ_{HHH}~32% at HL-LHC (14 TeV, 3000fb⁻¹)
 - At LC: Very challenging (small rates, lots of dilution+backg.)

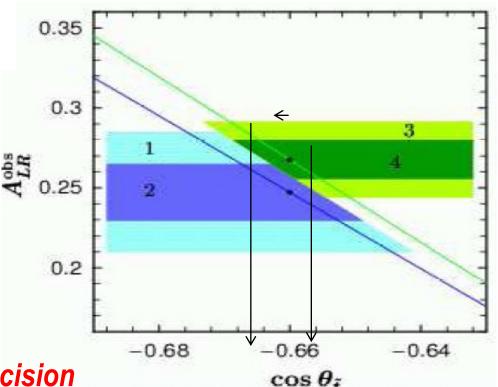


- Further improvement with P_{e+} =55% instead of P_{e+} =30%:
 - Same scaling factors as given before
 - about 50% enhancement comp. to P_{e+}=0%


MSSM interpretation of light Higgs

- Preferred values for stop masses from fits :
 - − m_H no free parameter any more: Δm²_H~m⁴_{top}

- M_h~125 GeV requires large stop mixing ~ large X_t
 - Rather large X_t=A_t-μ cot β
- But m_f can still be light!



Start with stops: features at a LC

With polarized beams: A_{LR} applicable

Eberl, Kraml,'05

$\mathcal{L}_{ ext{int}}$	P_{e^-}	$P_{e^+} \Delta m_{\tilde{t}_1}$	$\Delta \cos \theta_{\tilde{t}}$
$100 \; {\rm fb}^{-1}$	∓0.9	0 1.1%	2.3%
$500 \; {\rm fb}^{-1}$	∓ 0.9	0 - 0.5%	1.1%
$100 \; \text{fb}^{-1}$	∓ 0.9	$\pm 0.6~0.8\%$	1.4%
$500 \; \text{fb}^{-1}$	∓ 0.9	$\pm 0.6 \ 0.4\%$	0.7%

- Mixing angle Δcosθ_t<1%
 - If $\Delta X_t \pm 1\%$: $\Delta m_h = \pm 0.2 GeV$
- → matches long-term LHC precision
 - If $\Delta X_t \pm 10\%$: $\Delta m_h = \pm 1.5 GeV$
- → Too big to check the consistency of the model!

Conclusions

- Rich phenomenology of 'Higgs@LC' (often exceeding LHC)
 - Model-independent couplings, absolute BR's, cross section...
 - Staged energy approach allows to choose the suitable energy

```
As e.g. \Delta m_{top} \sim 0.1 GeV, coup_{tth} \sim 5\%
H: BR's ~ 1 (b)-7(c)% ,\Gamma_h \sim 3\%, \Delta \lambda \sim 18\%,
CP, mixed states
```

- flexible and still improvement potential: beam pol., tunable \sqrt{s}
- LC precision allows to reveal the Higgs secrets!
- Further undiscussed options(because of time):
 - Extended Higgs sector (heavy +light Higgs, NMSSM,....)
 E.g. NMSSM could have mh<LEP-limit
 - Further option: γγ-option at high energy
 beneficial for heavy Higgs and unique also for CP-couplings