Quote from Yesterday's Plenary

The Higgs must be studied with the best precision we can muster

Nigel Lockyer, Fermilab Director 01-July-2013

Patrick Janot

The TLEP Physics Case : First Look

- □ TLEP: An e^+e^- collider in a new 80-100 km tunnel with \sqrt{s} up to 350 GeV
 - Supported by the recent European Strategy update

J. Osborne and C. Waajer

- Now part of the CERN Medium Term Plan (2013-2018)
 - Approved by the CERN Council two weeks ago.
- Design Study Proposal : <u>http://tlep.web.cern.ch/</u>
- Next workshop 25-26 July 2013 ar FNAL (approved by the DOE)

https://indico.fnal.gov/internalPage.py?pageId=2&confId=6983

Scientific Motivation

- **Driven by today's experimental situation**
 - A (very) Standard Higgs boson and a (very) Standard Model

- Need to measure Higgs properties and EWSB parameters with high(er) precision
 - "With the best precision we can muster"
- No new physics all the way to several 100's GeV (SUSY) or several TeV (Resonances)
 - Next run at 14 TeV will extend the coverage to ~500 GeV (SUSY) or more
 - Very strong incentive to look for heavier New Physics
 - Linear Colliders with $\sqrt{s} = o(TeV)$ do not cover this Physics case

Precision Needed

- Higgs couplings : directly sensitive to New Physics
 - Expected deviations to SM couplings depend on the New Physics scale

$$: \frac{g_{HXX}}{g_{HXX}^{SM}} \approx 1 + \delta \times \left(\frac{1 \text{ TeV}}{\Lambda_{NP}}\right)^{2}$$

with δ < 5% -

80.5

80.4

80.3

155

[GeV]

ъ

(Exact value depend on model & coupling)

LHC excluded

68% CL

- LEP2 and Tevatron

175

m, [GeV]

► Need at least a per-cent accuracy for a 5 σ observation if Λ_{NP} = 1 TeV

And a sub-per-cent accuracy for multi-TeV New Physics scale

Need millions of Higgs bosons

EWSB parameters : Stringent SM closure test ~

- Direct m_w and m_{top} measurements
 - Improve by at least one order of magnitude
 - → $\delta m_W < 1$ MeV and $\delta m_{top} < 50$ MeV
- Z pole measurements
 - Improve by at least two orders of magnitude
 - Need > 10⁴ times LEP1 statistics

Need to reduce all systematic and theory uncertainties, too.

195

The solution : TLEP + VHE-LHC

In a new 80-100 km circular tunnel :

<u>First step</u>

TLEP : e⁺e⁻, √s up to 350 GeV

- Tera-Z : $\sqrt{s} \sim m_z$
- Oku-W : √s~2m_w
- Mega-Higgs : √s~240 GeV
- Mega-top : √s~2m_{top}

Followed by

VHE-LHC : pp collisions, √s ~ 100 TeV with 16T magnets

- Follow the successful historical path for high-energy physics
 - TLEP Physics case: Precision measurements sensitive to multi-TeV New Physics
 - With luminosity 10-1000 × larger than projects of similar timescale and cost
 - VHE-LHC Physics case: Direct search for New Physics in the 10-100 TeV range
 - ➡ Also allows the HHH coupling to be measured to a few %

Energy and Luminosity at TLEP (1)

- At 350 GeV, beams lose 9 GeV / turn by synchrotron radiation
 - ♦ Need 600 5-cell SC cavities @ 20 MV/m
 - Much less than ILC (16000 9-cell @ 31.5 MV/m)
 - 200 kW/ cavity : RF couplers are an issue too
 - Heat extraction, shielding against radiation, ...
- Achieve luminosity with small vertical beam size : $\sigma_v \sim 100$ nm
 - A factor 30 smaller than at LEP2, but a factor 2 larger than SuperKEKB
 - Much more relaxed than ILC (6-8 nm), hence negligible beamstrahlung for physics

At smaller \sqrt{s} , increase the number of bunches to saturate the RF power

√s (GeV)	90	160	240	350
Luminosity (x10 ³⁴ cm ⁻² s ⁻¹)/IP	56	16	5	1.3
Vertical Beam Size	270	140	140	100
RF Cavity Gradient	3	3	10	20
Number of bunches	4400	600	80	12
Beam lifetime (mn)	67	25	16	27
Total AC power (MW)	250	250	260	284

A. Blondel et al. arXiV:1305.6498

RF Coupler (ESS/SPL)

Energy and Luminosity at TLEP (2)

- **Luminosity increases when** \sqrt{s} decreases at circular colliders
 - By optimal use of the RF power

- And circular colliders can have several IP's
 - Ultimate precision measurements possible only at circular colliders

Why only 10³² cm⁻²s⁻¹ at LEP2 ?

- **Beam lifetime due to Bhabha scattering ~ 15 minutes**
 - Will be ~ 5 minutes at SuperKEKB
 - Need to design an efficient top-up injector

0.015

0.01

0

0.005

0.02

0.025

0.03

- Lifetime further reduced by beamstrahlung
 - Radiating e[±] pushed outside the acceptance
 - Need to design an achromatic optics at the IPs
 - with 2-3% momentum acceptance

0.035 0.04 (120-E_)/E_

Negligible Beamstrahlung for Physics

Many positive consequences : backgrounds, kin. fits, lumi measurement...

- CLIC study: m_{top} uncertainty of 75 MeV for a 20% uncertainty on the luminosity peak RMS
- Current theory uncertainty ~ 100 MeV

Precision tests of EWSB at TLEP (1)

See Alain Blondel's talk on Sunday for more details

	LEP	ILC	TLEP
√s ~ m _z	Mega-Z	Giga-Z	Tera-Z
#Ζ / year Polarization Precision vs LEP1 Error on m _Z , Γ _Z	2×10 ⁷ Yes (T) 1 2 MeV	Few 10 ⁹ Easy 1/5 to 1/10 Few MeV	10¹² (>10¹¹ b,c,τ) Yes (T,L) ~1/100 < 0.1 MeV
√s ~ 2m _w			
#W pairs / year Polarization Error on m _w	Few dozens No 220 MeV	2×10 ⁵ Easy <mark>6 MeV</mark>	2.5×10⁷ Yes (T) 0.5 MeV
√s = 180-250 GeV			Oku-W
# W pairs / 5 years Error on m _w	4×10 ⁴ 33 MeV	4×10 ⁶ 7 MeV	2×10 ⁸ 1 MeV
√s ~ 350 GeV			Mega-Top
# top pairs / 5 years Error on m _{top}	_	100,000 30 MeV	1,000,000 10 MeV

• Bottom line : Only TLEP meets the precision requirements

Η

• Bottom line : TLEP meets the precision requirements

Precision tests of EWSB at TLEP (2)

Patrick Janot

TLEP as a Higgs Factory

• Number of Higgs bosons produced at $\sqrt{s} = 240-250 \& 350 \text{ GeV}$

	ILC-250	TLEP-240	ILC-350	TLEP-350
Lumi / IP / year	50 fb ^{−1}	500 fb⁻1	70 fb ^{−1}	130 fb ^{−1}
Lumi / 5 yrs	250 fb ⁻¹	10 ab ⁻¹	350 fb ⁻¹	2.6 ab ^{−1}
Beam Polarization	80%, 30%	_	80%,30%	_
# of HZ events	70,000	2,000,000	65,000	325,000
# of WW→H events	1,500	50,000	12,000	65,000

Measurements at $\sqrt{s} = 240-250$ GeV

□ Example : $e^+e^- \rightarrow ZH \rightarrow I^+I^- + anything$

Summary of the possible measurements :

(TLEP : CMS Full Simulation + some extrapolations for cc, gg)

	ILC TDR	From P. Azzi et al. arXiV:1208.1662
	ILC-250	TLEP-240
σ_{HZ}	2.5%	0.4%
$σ_{HZ}$ ×BR(H→bb)	1.1%	0.2%
σ _{HZ} ×BR(H→cc)	7.4%	1.2%
σ _{HZ} ×BR(H→gg)	9.1%	1.4%
$\sigma_{HZ} \times BR(H \rightarrow WW)$	6.4%	0.9%
σ _{HZ} ×BR(H→ττ)	4.2%	o.8%
σ _{HZ} ×BR(H→ZZ)	19%	3.1%
σ _{HZ} ×BR(H→γγ)	35%	3.0%
σ _{HZ} ×BR(H→μμ)	100%	13%
$\Gamma_{ m INV}$ / $\Gamma_{ m H}$	< 1%	< 0.2%
m _H	40 MeV	8 MeV

Patrick Janot

Snowmass Energy Frontier Workshop Seattle, 30 June -3 July 2013

Measurements at $\sqrt{s} = 350 \text{ GeV}$

- More $\sigma_{HZ} \times BR(H \rightarrow XX)$ and ... Determination of the total width
 - From the number of HZ events and of ZZZ events at $\sqrt{s} = 240$ GeV

$$\Gamma_{H} = \Gamma(H \rightarrow ZZ) / BR(H \rightarrow ZZ) \propto \sigma_{HZ} / BR(H \rightarrow ZZ)$$

• From the bbvv final state at $\sqrt{s} = 350$ GeV (and 240 GeV)

Global fit of the Higgs couplings (1)

Follows the lines Michael Peskin's fit (arXiV:1207.2516v3)

- A number of interesting features in this plot
 - LHC error bars; g_t measurement from ILC250; asymmetric error bars; ...

Global fit of the Higgs couplings (2)

- **Follows the lines Michael Peskin's fit** (arXiV:1207.2516v3)
 - With three minor differences
 - No combination with LHC in the estimate of the ILC physics potential
 - No model-dependent assumption on g_w and g_z
 - ► Assumed to be bounded from above by their SM value in arXiV:1207.2516v3
 - No assumption on the Higgs exotic decays
 - ► Assumed to be saturated by the measured invisible decays in arXiV:1207.2516v3
 - ... thus making the fit truly model-independent
 - And truly representative of the lepton-collider potential
 - Of course, the fit was also made with the same assumptions as in arXiV:1207.2516v3
 - And could reproduce Michael's results
- Result of the fit:

									IVI. Dachtis
Coupling	9z	g _w	g _b	9 _c	g _g	g_{τ}	g_{μ}	gγ	BR _{exo}
LEP-240	0.16%	0.85%	o.88%	1.0%	1.1%	0.94%	6.4%	1.7%	<0.48%
LEP-350	0.15%	0.19%	0.42%	0.71%	0.80%	0.54%	6.2%	1.5%	<0.45%
ILC-350	0.9%	0.5%	2.4%	3.8%	4.4%	2.9%	45%	14.5%	<2.9%

Global fit of the Higgs couplings (3)

• **Graphically** ...

- Only TLEP can reach the desired sub-per-cent accuracy
 - Needed to reach (multi-)TeV New Physics sensitivity
 - ➡ Theoretical work essential to reduce theory errors accordingly.

Global fit of the Higgs couplings (4)

- Comparison between HL-LHC, ILC and TLEP
 - Need additional (model-dependent) assumptions ٠
 - No exotic Higgs decays (no Γ_{μ} at LHC)

LC qualitative added value (LC = Lepton Collider)

- Precision (%) 10 HL-LHC HL-LHC : One experiment only - ILC350 ... CMS Scenario 1 TLEP350 CMS Scenario 2 J. Olsen 5 ±1% 0 -5
- c- and t-quark couplings are correlated (no H \rightarrow cc at LHC)

In bold, theory uncertainty are assumed to be divided by a factor 2, experimental uncertainties are assumed to scale with $1/\sqrt{L}$, and analysis performance are assumed to be identical as today

Quantitative added value from ILC (wrt HL-LHC) does not stick out clearly. ٠

Ηττ

Haa

Hcc

In contrast, sub-per-cent TLEP potential is striking for all couplings

HZZ

-10

(HL-LHC : One experiment only)

Hbb

HWW

Ηγγ

Other Higgs Couplings : Energy-Frontier Upgrades (1)

Patrick Janot

Snowmass Energy Frontier Workshop Seattle, 30 June -3 July 2013

Other Higgs Couplings : Energy-Frontier Upgrades (2)

Performance comparison for Htt and HHH couplings

- VHE-LHC : largest New Physics reach and best potential for g_{HHH}
 - CLIC better suited than ILC for a meaningful measurement of g_{HHH}
 - ➡ The ILC1TeV added value to g_{Htt} wrt HL-LHC might not be worth 12 B\$

TLEP Cost (Very Preliminary) Estimate

• Cost in billion CHF

Bare tunnel	3.1 ⁽¹⁾
Services & Additional infrastructure (electricity, cooling, service cavern, RP, ventilation, access roads)	1.0 ⁽²⁾
RF system	0.9 ⁽³⁾
Cryo system	0.2 ⁽⁴⁾
Vacuum system & RP	0.5 ⁽⁵⁾
Magnet system for collider & injector ring	o.8 ⁽⁶⁾
Pre-injector complex SPS reinforcements	0.5
Total	7.0

- (1): J. Osborne, Amrup study, June 2012
- (2): Extrapolation from LEP
- (3): O. Brunner, detailed estimate, 7 May 2013
- (4): F. Haug, 4th TLEP Days, 5 April 2013
- (5): K. Oide : factor 2.5 higher than KEK, estimated for 80 km ring
- (6): 24,000 magnets for collider & injector; cost per magnet 30 kCHF (LHeC);

Note: detector costs not included – count 0.5 per detector (LHC)

Similar to ILC500 – but site exists already

TLEP Cost (Very Preliminary) Estimate

• Cost in billion CHF

TLEP Possible Timescale

- Similar timescales for TLEP and ILC
 - ILC aims for Physics in 2027-2028
- TLEP
 - Design study : 2013-2017
 - Next European Strategy Workshop : 2017-2018
 - Decision to go and start digging : 2018-2019
 - Start installation in parallel with HL-LHC running : 2023 ...
 - Start running at the end of HL-LHC running : 2030 ..., for 12-15 years.

	2	2	2	2	2	2	2	
	0	ο	0	0	0	0	C	
	1	1	2	2	3	3	5	
	0	5	0	5	0	5	C	
LHC								
HL-LHC		R&D + consti						
TLEP	Design + R&D + construction							
VHE-LHC		Design + R&D + construction						

Patrick Janot

Snowmass Energy Frontier Workshop Seattle, 30 June -3 July 2013

Concluding Remarks

- It is important to choose the right machine for the future
 - Cannot afford to be wrong for a price of ~10 B\$
- We believe TLEP to be the best complementary machine to LHC
 - Unbeatable precision for Higgs properties and EWSB parameters measurements
- **TLEP is based on a low-risk, well-known technology**
 - Supported by much progress in e⁺e⁻ circular factories for 20 years (and counting)
 - LEP, LEP₂, (super) b factories, synchrotron light sources
 - Based on this experience, luminosity, power and cost predictions will be reliable
- It is a first ambitious step in a long-term vision for high-energy physics
 - Many synergies with VHE-LHC : Tunnel, accelerator, experiments, physics
- **D** The design study is starting up as we speak, acted in the CERN MTP
 - Join us at <u>http://tlep.web.cern.ch</u>
- The goal is to have a technically-ready proposal by 2018
 - So that the community can take a fully-informed decision
 - with the LHC Run2 results at $\sqrt{s} = 13-14$ TeV in hand
- We aim for physics in 2030