

Measurement of Higgs couplings and mass in e⁺e⁻ collisions at CLIC

Philipp Roloff (CERN) on behalf of the CLIC detector and physics study

Snowmass Energy Frontier workshop, University of Washington, Seattle, 02/07/2013

CLIC in one slide

CLIC is the most mature option for a multi-TeV future e⁺e⁻ collider

- Based on 2-beam acceleration scheme
- Operated at room temperature
- Gradient: 100 MV/m
- Staged construction: ≈350 GeV up to 3 TeV
- High luminosity (a few 10³⁴ cm⁻²s⁻¹)

Fig. 7.2: CLIC footprints near CERN, showing various implementation stages [5].

The CLIC detector and physics study detector

- Pre-collaboration structure based on "Memorandum of Cooperation" (MoC): http://lcd.web.cern.ch/lcd/Home/MoC.html
- CERN acts as host laboratory
- At the moment 17 institutes from 14 countries, more contributors most welcome!

CLIC detector concepts

Based on ILC concepts (ILD and SiD), adapted to CLIC conditions

All benchmark studies are based on full detector simulations (Geant4)

Higgs production at CLIC

Processes at higher energy

CLIC energy stages

- CLIC will be implemented in stages: optimised running conditions over a wide energy range
- The energy stages are defined by physics with additional technical considerations
- → strategy can be adapted to discoveries at the LHC

Currently studied example scenario:

- Stage 1: 350/375 GeV, 500 fb⁻¹ HZ cross section, mass, Hv v contribution sizeable, various branching rations, top threshold scan
- Stage 2: 1.4 TeV, 1.5 ab⁻¹ BSM physics, ttH, Higgs self-coupling, rare Higgs decays
- Stage 3: 3 TeV, 2 ab⁻¹ BSM physics, ttH, Higgs self-coupling, rare Higgs decays

Some numbers

Unpolarised cross sections for m_H = 125 GeV including ISR:

	350 GeV	1.4 TeV	3 TeV
$\sigma(e^+e^- \to ZH)$	134 fb	9 fb	2 fb
$\sigma(e^+e^- \rightarrow Hv_e^-\overline{v}_e)$	52 fb	279 fb	479 fb
$\sigma(e^+e^- \rightarrow He^+e^-)$	7 fb	28 fb	49 fb

Numbers of events including ISR & Beam-strahlung:

	350 GeV	1.4 TeV	3 TeV
L _{int}	500 fb ⁻¹	1500 fb ⁻¹	2000 fb ⁻¹
# ZH events	68'000	20'000	11'000
# Hv v events	26'000	370'000	830'000
# He⁺e⁻ events	3'700	37'000	84'000

The electron polarisation for the CLIC baseline is ±80%, possibility for positron polarisation at lower level

polarization	Enhancement Factor		
$P(\mathrm{e}^-):P(\mathrm{e}^+)$	$e^+e^- \rightarrow ZH$	$e^+e^- \to H\nu_e \overline{\nu}_e$	
unpolarized	1.00	1.00	
-80%: 0%	1.13	1.80	
-80%:+30%	1.41	2.34	

Measurements at 350 GeV (1)

Higgsstrahlung process:

- HZ events can be identified from Z recoil mass
- \rightarrow model independent measurements of $m_{_{\! H}}$ and the $g_{_{\! H77}}$ coupling

$\Delta(m_{_{\rm H}}) \approx 120 \text{ MeV}$
$\Delta(\sigma_{HZ}) / \sigma_{HZ} \approx 4\%$

Events 050	- ' ' ' - - - -		nput total	- - - - -
200	- - - -	M	itted signal itted backgroun	d =
150	- - -	<u> </u>		-
100	-	17444		-
50			<u>,</u>	-
0	100	150	200	
			$M_{recoil}\left[G\epsilon\right]$	ŧV]

 $e^+e^+ \rightarrow ZH \rightarrow \mu^+\mu^-H$

\sqrt{s}	250 GeV	350 GeV	350 GeV
\mathscr{L}_{int}	$250 \; {\rm fb^{-1}}$	$350 \; {\rm fb}^{-1}$	$500 \; {\rm fb}^{-1}$
$\Delta(\sigma)/\sigma$	3%	3.7%	3.1%
$\Delta(g_{ m HZZ})/g_{ m HZZ}$	1.5%	1.9%	1.6%

ILC with $P(e^{-}) = -80\%$, $P(e^{+}) = +30\%$

→ lower cross section at 250 GeV compensated by higher luminosity at 350 GeV

Measurements at 350 GeV (2)

Measurement	Observable	Stat. precision
$\sigma(HZ) \times BR(H \to \tau^{+}\tau^{-})$	$g^2_{HZZ}g^2_{H\pi\pi}$ / Γ_H	5.7%
$\sigma(HZ) \times BR(H \rightarrow b\overline{b})$	$g^2_{_{HZZ}}g^2_{_{Hbb}}$ / $\Gamma_{_{H}}$	ongoing
$\sigma(HZ) \times BR(H \rightarrow c\overline{c})$	$g^2_{HZZ}g^2_{Hcc}$ / Γ_{H}	ongoing
$\sigma(HZ) \times BR(H \rightarrow gg)$		ongoing
$\sigma(HZ) \times BR(H \to WW^*)$	$g_{_{_{_{\hspace{-0.05cm}HZZ}}}^{_{_{_{\hspace{-0.05cm}HWW}}}}^{_{_{_{\hspace{-0.05cm}HWW}}}}$ / $\Gamma_{_{_{\hspace{-0.05cm}H}}}$	ongoing

Assuming unpolarised beams

Sensitivity to the total Higgs decay width due to sizeable cross section for WW fusion:

$$\frac{\sigma(e^+e^- \to ZH) \times BR(H \to b\bar{b})}{\sigma(e^+e^- \to \nu_e\bar{\nu}_e H) \times BR(H \to b\bar{b})} \propto \left(\frac{g_{HZZ}}{g_{HWW}}\right)^2$$

$$\sigma(H \nu_e \bar{\nu}_e) \times BR(H \to WW^*) \propto \frac{g_{HWW}^4}{\Gamma_H}$$

Measurements in $Hv_e^-v_e$ events at 1.4 TeV

Measurement	Observable	Stat. precision
$\sigma(Hv_e^{\overline{v}_e}) \times BR(H \to \tau^+\tau^-)$	$g^2_{HWW}g^2_{H\tau\tau}/\Gamma_H$	< 3.7%
$\sigma(Hv_e^{\overline{v}_e}) \times BR(H \to b\overline{b})$	$g^2_{HWW}g^2_{Hbb}$ / Γ_{H}	0.3% (preliminary)
$\sigma(Hv_e^-\overline{v}_e) \times BR(H \to c\overline{c})$	$g^2_{HWW}g^2_{Hcc}$ / Γ_{H}	2.9% (preliminary)
$\sigma(Hv_e^{-}\overline{v_e}) \times BR(H \rightarrow gg)$		1.8% (preliminary)
$\sigma(Hv_e^{-}\overline{v}_e) \times BR(H \to \mu^{\dagger}\mu^{-})$	$g^2_{_{HWW}}g^2_{_{H\mu\mu}}$ / $\Gamma_{_{H}}$	20% (preliminary)
$\sigma(Hv_e^{-}v_e) \times BR(H \to \gamma\gamma)$		15% (preliminary)
$\sigma(Hv_e^{-}v_e) \times BR(H \rightarrow Z\gamma)$		ongoing
$\sigma(Hv_e^{-}\overline{v_e}) \times BR(H \rightarrow ZZ^*)$	$g_{\ HZZ}^4 / \Gamma_{\ H}$	ongoing
$\sigma(Hv_e^{\overline{v}_e}) \times BR(H \to WW^*)$	$g_{_{_{_{_{_{_{_{_{_{_{_{}}}}}}}}}}}^{_{_{_{_$	ongoing
$\sigma(He^+e^-) \times BR(H \to b\overline{b})$	$g^2_{HZZ}g^2_{Hbb}$ / Γ_{H}	ongoing

Higgs mass from H \rightarrow b \overline{b} mass distribution: $\Delta(m_H) \approx 40$ MeV (estimated)

Measurements in Hv v ev events at 3 TeV

Measurement	Observable	Stat. precision
$\sigma(Hv_e^{\overline{v}_e}) \times BR(H \to b\overline{b})$	$g^2_{HWW}g^2_{Hbb}$ / Γ_H	0.2%
$\sigma(Hv_e^{-}v_e) \times BR(H \to c\bar{c})$	$g_{_{_{_{_{_{_{_{_{_{_{_{_{1}}}}}}}}}}}^2}g_{_{_{_{_{_{_{_{_{_{1}}}}}}}}}}^2}$ / $\Gamma_{_{_{_{_{_{_{_{_{_{1}}}}}}}}}$	2.7%
$\sigma(Hv_e^{-}v_e) \times BR(H \rightarrow gg)$		1.8%
$\sigma(Hv_e^{-}v_e) \times BR(H \to \mu^{\dagger}\mu^{-})$	$g^2_{_{HWW}}g^2_{_{H\mu\mu}}$ / $\Gamma_{_H}$	16%

Higgs mass from H \rightarrow b \overline{b} mass distribution: $\Delta(m_H) \approx 33$ MeV (estimated)

The ttH and Ze⁺e⁻ final states at 1.4 TeV

→ The tth cross section is directly sensitive to the top Yukawa coupling g

Investigated final states:

"6 jets": $t(\rightarrow qqb)\bar{t}(\rightarrow lv\bar{b})H(\rightarrow b\bar{b})$

 $\Delta(\sigma(ttH)) \approx 16\%$ (preliminary) assuming unpolarised beams

"8 jets": $t(\rightarrow qqb)\bar{t}(\rightarrow qq\bar{b})H(\rightarrow b\bar{b})$ expected to be more precise (as for the ILC at 1 TeV)

Aim to extract the top Yukawa coupling from combined cross section for both decay channels

Higgs production in ZZ fusion

At high energy large samples of ZZ and WW fusion events available:

$$\frac{\sigma(He^+e^-) \times BR(H \to b\bar{b})}{\sigma(H\nu_e\bar{\nu}_e) \times BR(H \to b\bar{b})}$$

ongoing study

 \rightarrow Precise determination of the ratio g_{HZZ} / g_{HWW} (many systematic effects cancel in the ratio)

Double Higgs production at high energy

- The HHv $_{\rm e}$ $\bar{\rm v}_{\rm e}$ cross section is sensitive to the Higgs self coupling, λ , and the quartic $g_{\rm HHWW}$ coupling
- $\sigma(HHv_e \bar{v}_e) = 0.15 (0.59)$ fb at 1.4 (3) TeV
- → high energy and luminosity crucial

NB: The results on this slide were obtained for $m_{_{\rm H}}$ = 120 GeV

Measurement	1.4 TeV	3 TeV
$\Delta(g_{_{ m HHWW}})$	7% (preliminary)	3% (preliminary)
$\Delta(\lambda)$	28%	16%
$\Delta(\lambda)$ for P(e ⁻) = -80%	21%	12%

Overview of Higgs measurements at CLIC

			Stat	istical precis	sion
Channel	Measurement	Observable	350 GeV	1.4 TeV	3.0 TeV
			$500 \; { m fb}^{-1}$	$1.5 {\rm \ ab}^{-1}$	$2.0~{\rm ab}^{-1}$
ZH	Recoil mass distribution	$m_{ m H}$	120 MeV	_	_
ZH	$H \rightarrow b\overline{b}$ mass distribution	$m_{ m H}$?	_	_
$H\nu_e\overline{\nu}_e$	$H \rightarrow b\overline{b}$ mass distribution	$m_{ m H}$	_	$40~{ m MeV}^\dagger$	$33~\text{MeV}^{\dagger}$
ZH	$\sigma(\mathrm{HZ}) \times \mathit{BR}(\mathrm{Z} \to \ell^+\ell^-)$	$g^2_{ m HZZ}$	4.2%	_	_
ZH	$\sigma(\mathrm{HZ}) \times \mathit{BR}(\mathrm{H} \to \mathrm{b}\overline{\mathrm{b}})$	$g_{ m HZZ}^2 g_{ m Hbb}^2/\Gamma_{ m H}$	$1\%^\dagger$	_	_
ZH	$\sigma(\mathrm{HZ}) \times \mathit{BR}(\mathrm{H} \to \mathrm{c}\overline{\mathrm{c}})$	$g_{ m HZZ}^2 g_{ m Hcc}^2/\Gamma_{ m H}$	$5\%^\dagger$	_	_
ZH	$\sigma(\mathrm{HZ}) \times \mathit{BR}(\mathrm{H} \to \mathrm{gg})$		$6\%^\dagger$	_	_
ZH	$\sigma({ m HZ}) imes {\it BR}({ m H} ightarrow au^+ au^-)$	$g_{ m HZZ}^2 g_{ m H au au}^2/\Gamma_{ m H}$	5.7%	_	_
ZH	$\sigma(HZ) \times \textit{BR}(H \to WW^*)$	$g_{ m HZZ}^2 g_{ m HWW}^2/\Gamma_{ m H}$?	_	_
$H v_e \overline{v}_e$	$\sigma(H\nu_{e}\overline{\nu}_{e}) \times BR(H \to b\overline{b})$	$g_{ m HWW}^2 g_{ m Hbb}^2/\Gamma_{ m H}$?	0.3%	0.2%
$H v_e \overline{v}_e$	$\sigma(Hv_{e}\overline{v}_{e}) \times BR(H \rightarrow c\overline{c})$	$g_{ m HWW}^2 g_{ m Hcc}^2/\Gamma_{ m H}$	_	2.9%	2.7%
$Hv_e \overline{v}_e$	$\sigma(\mathrm{Hv_e} \overline{\mathrm{v}_\mathrm{e}}) \times \mathit{BR}(\mathrm{H} \to \mathrm{gg})$		_	1.8%	1.8%
$Hv_{e}\overline{v}_{e}$	$\sigma(\mathrm{H} \mathrm{v_e} \overline{\mathrm{v}_\mathrm{e}}) imes \mathit{BR}(\mathrm{H} o \mathrm{\tau}^+ \mathrm{\tau}^-)$	$g_{ m HWW}^2 g_{ m H au au}^2/\Gamma_{ m H}$	_	3.7%	_
$Hv_e \overline{v}_e$	$\sigma(\mathrm{Hv_e} \overline{\mathrm{v}_\mathrm{e}}) \times \mathit{BR}(\mathrm{H} \to \mu^+ \mu^-)$	$g_{ m HWW}^2 g_{ m H\mu\mu}^2/\Gamma_{ m H}$	_	$20\%^\dagger$	16%
$Hv_{e}\overline{v}_{e}$	$\sigma(\mathrm{Hv_e}\overline{\mathrm{v}_\mathrm{e}}) imes \mathit{BR}(\mathrm{H} o \gamma\gamma)$		_	$15\%^\dagger$	
$Hv_e^{\overline{v}_e}$	$\sigma(\mathrm{Hv_e} \overline{\mathrm{v}_\mathrm{e}}) \times \mathit{BR}(\mathrm{H} o \mathrm{Z}\gamma)$		_		
$Hv_{e}\overline{v}_{e}$	$\sigma(Hv_{\rm e}\overline{v}_{\rm e}) \times BR(H \to WW^*)$	$g_{ m HWW}^4/\Gamma_{ m H}$	_	?	
$Hv_{e}\overline{v}_{e}$	$\sigma(Hv_{\rm e}\overline{v}_{\rm e}) \times BR(H \to ZZ^*)$	$g_{ m HWW}^2 g_{ m HZZ}^2/\Gamma_{ m H}$	_		
$\mathrm{He}^{+}\mathrm{e}^{-}$	$\sigma(\mathrm{He^+e^-}) \times BR(\mathrm{H} \to \mathrm{b}\overline{\mathrm{b}})$	$g_{ m HZZ}^2 g_{ m Hbb}^2/\Gamma_{ m H}$	_		
tīH	$\sigma(t\bar{t}H) \times BR(H \to b\bar{b})$	$g_{ m Htt}^2 g_{ m Hbb}^2 / \Gamma_{ m H}$	_	8% [†]	_
$HHv_{e}\overline{v}_{e}$	$\sigma(\mathrm{HH} \mathrm{v_e} \overline{\mathrm{v}_\mathrm{e}})$	g _{HHWW}	_	$7\%^\dagger$	$3\%^\dagger$
$HHv_{e}\overline{v}_{e}$	$\sigma(\mathrm{HHv_e}\overline{\mathrm{v}_\mathrm{e}})$	λ	_	28%	16%
$HHv_{e}\overline{v}_{e}$	with 80% e ⁻ polarization	λ	_	21%	12%

Summary and outlook

- The first stage of a CLIC collider at 350 GeV provides precise determinations of the absolute values of many Higgs boson couplings
- Subsequent high-energy running, here assumed at 1.4 and 3 TeV, improves the precision of many observables significantly and gives access to rare Higgs decays
- High-energy CLIC operation provides the potential to measure the trilinear Higgs self-coupling at the 10% level

For the meeting in Minneapolis we expect to have:

- Additional results from currently ongoing studies
- A combined fit to all measurements at 350 GeV, 350 GeV + 1.4 TeV and 350 GeV + 1.4 TeV + 3 TeV to extract the Higgs couplings and width

Backup slides

Selected CLIC parameters

	CLIC at 3 TeV		
L (cm ⁻² s ⁻¹)	5.9 · 10 ³⁴		
Bunch separation	0.5 ns		Drive timing
#Bunches / train	312		requirements for CLIC detector
Train duration	156 ns		ioi clic detector
Train rep. rate	50 Hz		
Crossing angle	20 mrad		
Particles / bunch	$3.72 \cdot 10^9$		Very small beam profile
$\sigma_{_{_{\mathbf{x}}}}/\sigma_{_{_{\mathbf{y}}}}$ (nm)	≈ 45 / 1 ~		at the interaction point
σ¸ (μm)	44		at the interaction point
-		_	156 ns 20 ms
		_	
	CLIC: trains at 50 H	I ₂ 1	train = 312 bunches, 0.5 ns apart

Beam related backgrounds

- e⁺e⁻ pairs
- $\gamma\gamma \rightarrow hadrons$
- Beam halo muons

Coherent e⁺e⁻ pairs:

7 · 10⁸ per BX, very forward **Incoherent e**⁺**e**⁻ **pairs**:

- 3 · 10⁵ per BX, rather forward
- → Detector design issue (high occupancies)

yy → hadrons

- "Only" 3.2 per BX at 3 TeV
- Main background in calorimeters and trackers
- → Impact on physics

Luminosity spectrum

Significant energy loss at the interaction point due to Beamstrahlung

Full luminosity: $L = 5.9 \cdot 10^{34} \text{ cm}^{-2}\text{s}^{-1}$ In the most energetic 1%: ("peak luminosity") $L_{0.01} = 2.0 \cdot 10^{34} \text{ cm}^{-2}\text{s}^{-1}$

Most physics processes are studies well above the production threshold → Profit from (almost) full luminosity

$$\sqrt{s'} = \sqrt{4 \cdot E_1 \cdot E_2}$$

Background suppression

Triggerless readout of full bunch train:

- Define reconstruction window around t₀
- All hits and tracks in this window are passed to the reconstruction
- → Physics objects with precise p_¬ and cluster time information

2.) Apply cluster-based timing cuts

- Cuts depend on particle-type, $\mathbf{p}_{\scriptscriptstyle T}$ and detector region
- → Protects physics objects at high p₊

Time windows and hit resolutions

Used in the reconstruction software for CDR simulations:

Subdetector	Reconstruction window	hit resolution
ECAL	10 ns	1 ns
HCAL Endcaps	10 ns	1 ns
HCAL Barrel	100 ns	1 ns
Silicon Detectors	10 ns	$10/\sqrt{12}$ ns
TPC	entire bunch train	n/a

- CLIC hardware requirements
- Achievable in the calorimeters with a sampling every ≈ 25 ns

Impact of the timing cuts

e⁺e⁻ → H⁺H⁻ → tb̄bt̄ (8 jet final state)

1.2 TeV background in the reconstruction window

100 GeV background after (tight) timing cuts

Jet reconstruction at CLIC I

$$e^+e^- \rightarrow \tilde{q}_R \tilde{q}_R \rightarrow q \bar{q} \, \tilde{\chi}_1^0 \, \tilde{\chi}_1^0$$

Two jets + missing energy

- Using Durham k₊ à la LEP
- → Timing cuts are effective, but not sufficient

Jet reconstruction at CLIC II

$$e^+e^- \to \tilde{q}_R \tilde{q}_R \to q \overline{q} \, \tilde{\chi}_1^0 \, \tilde{\chi}_1^0$$

Two jets + missing energy

- Using Durham k_→ à la LEP
- → Timing cuts are effective, but not sufficient
- "hadron collider" k_{τ} , R = 0.7
- → Background significantly reduced further
- → Need timing cut + jet finding for background reduction

W⁺W⁻ and ZZ

Figure 19: Separation of W and Z from the chargino decay without overlay (left) and with 60 BX of background (right) for CLIC_SiD.

Test of the di-jet mass reconstruction

Chargino and neutralino pair production:

Reconstruct W[±]/Z/h in hadronic decays

→ four jets and missing energy

Precision on the measured gaugino masses (few hundred GeV): 1 - 1.5%

Test of the lepton reconstruction

- Slepton production very clean at CLIC
- SUSY "model II": slepton masses ≈ 1 TeV
- Investigated channels include:

$$\begin{split} e^{+}e^{-} &\to \tilde{\mu}_{R}^{+}\tilde{\mu}_{R}^{-} \to \mu^{+}\mu^{-}\,\tilde{\chi}_{1}^{0}\,\tilde{\chi}_{1}^{0} \\ e^{+}e^{-} &\to \tilde{e}_{R}^{+}\tilde{e}_{R}^{-} \to e^{+}e^{-}\,\tilde{\chi}_{1}^{0}\,\tilde{\chi}_{1}^{0} \\ e^{+}e^{-} &\to \tilde{\nu}_{e}\tilde{\nu}_{e} \to e^{+}e^{-}W^{+}W^{-}\,\tilde{\chi}_{1}^{0}\,\tilde{\chi}_{1}^{0} \end{split}$$

- Leptons and missing energy
- Masses from endpoints of energy spectra

$m(\tilde{\mu}_{ m R})$	•	± 5.6 GeV
$m(\tilde{\mathrm{e}}_{\mathrm{R}})$	•	$\pm 2.8 \text{GeV}$
$m(\tilde{v}_{\rm e})$	•	$\pm 3.9 \mathrm{GeV}$
$m(\tilde{\chi}_1^0)$	•	$\pm 3.0\mathrm{GeV}$
$m(\tilde{\chi}_1^{\pm})$	•	± 3.7 GeV

Complex final states

Heavy Higgs bosons:

$$e^+e^- \rightarrow HA \rightarrow b\overline{b}b\overline{b}$$

 $e^+e^- \rightarrow H^+H^- \rightarrow t\overline{b}b\overline{t}$

Flavour tagging crucial!

Accuracy of the heavy Higgs mass measurements: ≈ 0.3%