Snowmass Meeeting Seattle

Top Quark Working Group

Kinematics of Top Quark Final States & Top Quark Charge Asymmetry

Andreas Jung, Markus Schulze, Jessie Shelton

Outline

- Study of theoretical error estimates on basic kinematic distributions
- Study of theoretical error estimates for boosted kinematics
- Top quark spin correlations
- Top quark charge asymmetry

• We use MCFM to study theoretical uncertainties at NLO QCD for

$$p_{\mathrm{T}}^{t},\,y_{t},\,|y_{t}|\!-\!|y_{ar{t}}|$$

at the 14 TeV and 33 TeV LHC.

- Errors are estimated from varying renormalization and factorization scales, and from using different pdf sets (MSTW,NN) with their error sets.
- The results hopefully give some guidance for error estimates on more complicated observables that involve the top quark decay products.

• The total NLO QCD cross section at the 14 TeV LHC

$$\sigma_{t\bar{t}}^{\text{NLO}} = 845 \text{ pb} \pm 12\% \text{ (scale)} \pm 2\% \text{ (MSTW)} \pm 8\% \text{ (NNPDFS)}$$

Scales are varied by a factor of two around mtop. Pdf errors are obtained from MSTW/NN by varying 40/100 eigenvector sets

- Scale uncertainty is reduced by a factor of two wrt. the LO.
- NLO QCD corrections enhance the total cross section by 30%
- The total NLO QCD cross section at the 33 TeV LHC

$$\sigma_{t\bar{t}}^{\mathrm{NLO}} = 5 \text{ nb } \pm 11\% \text{ (scale)}, \quad K=1.23$$

- The transverse momentum distribution can be predicted with 15-20% precision at NLO QCD. The *K*-factor is almost constant over a wide range of pT.
- The rapidity distribution has a scale uncertainty of up to 20% in the central region. A comparison of MSTW and NN pdf errors shows the significantly different error estimates. However, central values agree well.

- Rapidity difference is sensitive to the charge asymmetry at the LHC.
- Similar errors as for rapidity distribution.
 (Expect smaller errors on A because it is a ratio of cross sections)
- NLO QCD introduces a significant shape shift that introduces the asymmetry.

- Require p_{T}^t or $p_{\mathrm{T}}^{\bar{t}} \geq 600~\mathrm{GeV}$ and set $\mu_{\mathrm{R}} = \mu_{\mathrm{F}} = 600~\mathrm{GeV}$
- The cross section at 14 TeV is

$$\sigma_{t\bar{t}}^{\rm NLO} = 1.05 \text{ pb } \pm 15 \% \text{ (scale) } \pm 10 \% \text{ (MSTW)}$$

- Uncertainties on single p_T , y bins range up to 20-30%
- NLO QCD corrections induce moderate shape changes but the overall K-factor, K=1.45, is 10% larger than for the total cross section

• Calculations of approximate NNLO QCD corrections suggest that soft-gluon resummation is mandatory for boosted kinematics: Corrections range up to 100% wrt. to NLO predictions for $m_{t\bar{t}} \geq 1~{\rm TeV}$

[Auerbach, Chekanov, Kidonakis] [Ferroglia, Pecjak, Yang]

[Auerbach, Chekanov, Kidonakis]

	$M=500~{\rm GeV}$	$M=1500~{\rm GeV}$	M = 3000 GeV
LO	1.11	3.50×10^{-3}	2.04×10^{-5}
NLO corr. $(z \to 1)$	8.58×10^{-1}	$\left(3.74 \times 10^{-3}\right)$	2.51×10^{-5}
NNLO corr. (approx. A)	2.64×10^{-1}	2.00×10^{-3}	1.77×10^{-5}
NNLO corr. (approx. B)	3.05×10^{-1}	2.40×10^{-3}	2.11×10^{-5}
NNLO corr. (approx. C)	3.65×10^{-1}	2.67×10^{-3}	2.31×10^{-5}
NNLL corr.	3.72×10^{-1}	3.79×10^{-3}	4.42×10^{-5}

Table 2: Same as Table 1, but with $\sqrt{s} = 14$ TeV.

- \bullet At high energies, when $M_Z, M_W \ll \sqrt{s}$, (electro)weak corrections can become relevant.
- Effects on the total ttbar cross section ~ -2% at 14 TeV and 33 TeV
- Significantly larger corrections for energy-related distributions, e.g. [Kühn,Scharf,Uwer]: -10% at pT=1 TeV and -18% at pT=2 TeV.

• Partial cancellations with real emission of W,Z bosons are possible.

[Baur]: 1-2% cancellation at pT=500 GeV, much larger at pT=1 TeV, but very dependent on selection cuts

- Top quark spin correlations are a unique tool for studying the interplay of electroweak and strong physics in the top quark sector.
- Spin correlations are also sensitive to effects of physics beyond the SM

[Bernreuther,Si]

- The azimuth opening angle of the two leptons in the di-lepton channel is one of the cleanest probes of spin correlations.
- This observable has been shown to be most robust under higher order corrections and parton shower effects.
- Dependence on unphysical scales cancels almost completely in normalized distributions.

[Han, Katz, Krohn, Reece]

[Boughezal, Schulze]

- For standard acceptance cuts, NLO QCD introduces shape changes of at most 20%
- In scenarios where total cross sections are degenerate, spin correlations help separating SM tops, scalar partners and fermionic partners.
- Using 20 fb⁻¹ at 8 TeV spin corrlations can exclude 200 GeV stop quark pair production at the 95% C.L.

[Bernreuther,Si]:
$$\mathcal{L}_{eff} = \mathcal{L}_{SM} - \frac{\tilde{\mu}_t}{2} \bar{t} \sigma^{\mu\nu} T^a t G^a_{\mu\nu} - \frac{\bar{d}_t}{2} \bar{t} i \sigma^{\mu\nu} \gamma_5 T^a t G^a_{\mu\nu}$$

- Top quark spin correlations can be used to constrain anomalous chromo-magnetic and -electric dipole moments.
- The di-leptonic top quark sample can be used to constrain $\mathrm{Re}\hat{\mu}_t,\ \mathrm{Re}\hat{d}_t$ at the few percent level with 20 fb⁻¹ at 8 TeV
- Asymmetries of lepton top helicity angles in the lepton+jet channel can be used to constrain $\text{Im}\hat{\mu}_t$, $\text{Im}\hat{d}_t$ at the 10-20 percent level with 20 fb⁻¹ at 8 TeV

[Baumgart, Tweedie]:

• With 100fb⁻¹ and 13 TeV constraints of below 1% are possible

A_{FC} at LHC14

- Challenging signal for LHC14: intrinsic signal size smaller than at LHC7 and LHC8
- Observability a question of systematic errors
- Study in progress for Snowmass Minnesota
- Here: some quick estimations (input welcome)

Predictions as a function of cuts

SM predictions for A_{FB} at LHC14 as a function of cuts on $M_{t\bar{t}}$ (left) and $\eta_{t\bar{t}}$ (right), from Bernreuther and Si, 2012.

(Semileptonic) Measurements at LHC7

• ATLAS, 1 fb⁻¹:

$$A_{FC} = -0.019 \pm 0.028 \pm 0.024$$

• CMS, 5 fb⁻¹:

$$A_{FC} = 0.004 \pm 0.010 \pm 0.011$$

systematically limited

Do systematic errors scale with \mathcal{L} ?

- Leading sources of systematic uncertainty:
 - Modelling of backgrounds (*W*+jets, multijets)
 - lepton selection efficiency
 - model dependence of unfolding
 - tt̄ modeling
 - · jet energy scale

Quick feasibility estimate

Assumptions

- rough efficiency for reconstructing semileptonic tops $\epsilon \approx 1/5$
- systematic error is $\Delta \approx 0.0011$ at 5 fb⁻¹.

Statistical uncertainty as a function of cut on $M_{t\bar{t}}$

Quick feasibility estimate

Assumptions

- rough efficiency for reconstructing semileptonic tops $\epsilon \approx 1/5$
- systematic error is $\Delta \approx 0.0011$ at 5 fb⁻¹.

Statistical plus systematic uncertainty as a function of cut on $M_{t\bar{t}}$, assuming all systematic uncertainty scales with luminosity

Quick feasibility estimate

Assumptions

- rough efficiency for reconstructing semileptonic tops $\epsilon \approx 1/5$
- systematic error is $\Delta \approx 0.0011$ at 5 fb⁻¹.

Statistical plus systematic uncertainty as a function of cut on $M_{t\bar{t}}$, assuming 0.8 of the systematic uncertainty scales with luminosity

Top forward-backward at LHCb

- Large forward-backward asymmetry at the Tevatron, increases if going to rapidity differences of > 1
- "LHCb may be able to measure a tt production rate asymmetry, and thus indirectly probe an anomalous forward-backward tt asymmetry in the forward region" PRL 107, 082003 (2011) [arxiv:1103.3747]
 - Not a detailed experimental study

Top forward-backward at LHCb

- Large forward-backward asymmetry at the Tevatron, increases if going to rapidity differences of > 1
- "LHCb may be able to measure a tt production rate asymmetry, and thus indirectly probe an anomalous forward-backward tt asymmetry in the forward region" PRL 107, 082003 (2011) [arxiv:1103.3747]
 - Not a detailed experimental study

<u>Currently ongoing:</u>

- Detailed study by LHCb to give expected asymmetry
- Include uncertainties, effect of b-tagging and bg uncertainties

(Study needs approval by LHCb)

- Detailed experimental study, expect result for Minnesota!

Include expected yields for tops (towards a cross section measurement)

Top forward-backward asymmetry in ttbar + jet final state

- New observables to understand top asymmetries A: [arxiv: 1305.3272]
 - Incline asymmetry sensitive to A from q-qbar initial state
 - o Energy asymmetry sensitive to A from q-g channel
- Good potential to observe these at LHC14 (300 /fb)-1

LHC14 Incline asymmetry:

LHC14 Energy asymmetry:

Top forward-backward asymmetry in ttbar + jet final state

- Top asymmetry at 100 TeV, very preliminary numbers by Berge, Westhoff:
 - Higher energies means more gg "background", --> hard cuts to enhance top asymmetry
 - Requires large amounts of integrated luminosities
 - energy asymmetry of ~ 8% require jets |y| < 5 (its 3.5% for |y|<2.5)
 - work in progress...very preliminary: not much advantage

Backup

Top Polarization

- Potential Snowmass study for top polarization at LHC14
 - No deviation from SM top polarization in LHC7, limited by systematic uncertainties
 - Constrain e.g. axi-gluon models (can explain the forwardbackward asymmetry at the Tevatron)