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Basic kinematic distributions

e We use MCFM to study theoretical uncertainties at NLO QCD for
ptTa Yt, |yt|_|yt_|
at the 14 TeV and 33 TeV LHC.

e Errors are estimated from varying renormalization and factorization scales,
and from using different pdf sets (MSTW,NN) with their error sets.

e The results hopefully give some guidance for error estimates on
more complicated observables that involve the top quark decay products.



Basic kinematic distributions

e The total NLO QCD cross section at the 14 TeV LHC

oNLO — 845 pb 412% (scale) =20 (MSTW)
t P o (scale) o (NNPDFS)

Scales are varied by a factor of two around mtop.
Pdf errors are obtained from MSTW/NN by varying 40/100 eigenvector sets

e Scale uncertainty is reduced by a factor of two wrt. the LO.

e NLO QCD corrections enhance the total cross section by 30%

e The total NLO QCD cross section at the 33 TeV LHC
ohO =51nb +£11% (scale),  K=1.23



Basic kinematic distributions
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e The transverse momentum distribution can be predicted with
15-20% precision at NLO QCD.
The K-factor is almost constant over a wide range of pT.

e The rapidity distribution has a scale uncertainty of up to 20% in the central
region. A comparison of MSTW and NN pdf errors shows the significantly
different erorr estimates. However, central values agree well.



Basic kinematic distributions
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e Rapidity difference is sensitive to the charge asymmetry at the LHC.

e Similar errors as for rapidity distribution.
(Expect smaller errors on A because it is a ratio of cross sections)

e NLO QCD introduces a significant shape shift that introduces the asymmetry.



Boosted kinematics

dsigma [fb]

K-factor

H N WS o N o 3 8
P!
o
a
)
o
&
s
o
&
3
o
2
=]
3 2
S 3
N
=
S i
3
8 H
N
&
3 H
N
N
=] H
=R
N
e
® 8 "
=
3 (A
gm
]
5 "
o
&
s "
&
3 f
®
<
=)
©
Q| -
S
9 i
37 ©
2
S
©
S| =
s
©
o=
3
©
Q|-
=]
©
S |=
S

y(t)

e Require p?r or p?r > 600 GeV and set ur = ur = 600 GeV

® The cross section at 14 TeV is

oNLO — 1.05 pb £15 % (scale) £10 % (MSTW)

tt
e Uncertainties on single p,,y bins range up to 20-30%

e NLO QCD corrections induce moderate shape changes but the overall K-factor,
K=1.45, is 10% larger than for the total cross section



Boosted kinematics

e Calculations of approximate NNLO QCD corrections suggest that soft-gluon
resummation is mandatory for boosted kinematics:
Corrections range up to 100% wrt. to NLO predictions form,; > 1 TeV

[Auerbach,Chekanov,Kidonakis]
[Ferroglia,Pecjak,Yang]
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Boosted kinematics

e At high energies, when M, My, < +/s, (electro)weak corrections can
become relevant.

e Effects on the total ttbar cross section ~ -2% at 14 TeV and 33 TeV

e Significantly larger corrections for energy-related distributions, e.g.

[Kihn,Scharf,Uwer]: -10% at pT=1 TeV and -18% at pT=2 TeV.
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Boosted kinematics

e Partial cancellations with real emission of W,Z bosons are possible.

[Baur]: 1-2% cancellation at pT=500 GeV,
much larger at pT=1 TeV, but very dependent on selection cuts
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Top quark spin correlations

e Top quark spin correlations are a unique tool for studying the interplay of
electroweak and strong physics in the top quark sector.

e Spin correlations are also sensitive to effects of physics beyond the SM



Top quark spin correlations
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e The azimuth opening angle of the two leptons in the di-lepton channel
is one of the cleanest probes of spin correlations.

e This observable has been shown to be most robust under higher order corrections
and parton shower effects.

e Dependence on unphysical scales cancels almost completely in normalized
distributions.



Top quark spin correlations
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[Han,Katz,Krohn,Reece] [Boughezal,Schulze]

e For standard acceptance cuts, NLO QCD introduces shape changes of at most 20%

e In scenarios where total cross sections are degenerate, spin correlations help
separating SM tops, scalar partners and fermionic partners.

e Using 20 fb-! at 8 TeV spin corrlations can exclude 200 GeV stop quark pair
production at the 95% C.L.



Top quark spin correlations
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e Top quark spin correlations can be used to constrain anomalous
chromo-magnetic and -electric dipole moments.

® The di-leptonic top quark sample can be used to constrain Rejis, Red,
at the few percent level with 20 fb-! at 8 TeV

e Asymmetries of lepton top helicity angles in the leptont+jet channel can be used
to constrain Imji;, Imd; at the 10-20 percent level with 20 fb! at 8 TeV

[Baumgart, Tweedie]:

e With 100fb-! and 13 TeV constraints of below 1% are possible



Arc at LHC14

Challenging signal for LHC14: intrinsic signal size smaller
than at LHC7 and LHC8

Observability a question of systematic errors
Study in progress for Snowmass Minnesota

Here: some quick estimations (input welcome)



Predictions as a function of cuts

0.030 T T T - 0.025
0.025 0.020F
0.020 QCD+EW 0015F QCD+EW

g <]
£oo1s & oot
0010 QCD only ’ 0CD only
0.005 1 0.005¢
0.000L——: ‘ ; ‘
500 1000 1500 2000 00005 02 04 06 08

Meur

SM predictions for Arg at LHC14 as a function of cuts on M;; (left)
and n (right), from



(Semileptonic) Measurements at LHC7

o ATLAS, 1o~

Arc = —0.019£0.028 £ 0.024

o CMS, 5 fb~":

Arc = 0.004 +0.010 + 0.011

e systematically limited



Do systematic errors scale with £?

e Leading sources of systematic uncertainty:

Modelling of backgrounds (W +jets, multijets)

lepton selection efficiency

model dependence of unfolding

tt modeling

jet energy scale



Quick feasibility estimate

Assumptions

e rough efficiency for
reconstructing
semileptonic tops
e~1/5

e systematic error is

A ~0.0011at5fb".
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Quick feasibility estimate

Assumptions

e rough efficiency for
reconstructing
semileptonic tops
e~1/5

e systematic error is

A ~0.0011at5fb".
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Quick feasibility estimate

Assumptions

e rough efficiency for
reconstructing
semileptonic tops
e~1/5

e systematic error is

A ~0.0011at5fb".
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Top forward-backward at LHCDb

Large forward-backward asymmetry at the Tevatron, increases
if going to rapidity differences of > 1

"LHCb may be able to measure a tt production rate asymmetry,
and thus indirectly probe an anomalous forward-backward tt
asymmetry in the forward region" pru 107, 082003 (2011) [arxiv:1103.3747]

o Not a detailed experimental study  vow
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http://arxiv.org/abs/1103.3747

Top forward-backward at LHCDb

Large forward-backward asymmetry at the Tevatron, increases
if going to rapidity differences of > 1

"LHCb may be able to measure a tt production rate asymmetry,
and thus indirectly probe an anomalous forward-backward tt
asymmetry in the forward region" pru 107, 082003 (2011) [arxiv:1103.3747]

o Not a detailed experimental study Vit
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Currently ongoing:

o Detailed study by LHCD to give
expected asymmetry

o Include uncertainties, effect of
b-tagging and bg uncertainties

o Include expected yields for tops
(towards a cross section measurement)

o Detailed experimental study, expect result for Minnesota !

(Study needs approval by LHCb)
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http://arxiv.org/abs/1103.3747

Top forward-backward asymmetry in
ttbar + jet final state

e New observables to understand top asymmetries A: [arxiv:
1305.3272]

o Incline asymmetry - sensitive to A from g-gbar initial state
o Energy asymmetry - sensitive to A from g-g channel
e Good potential to observe these at LHC14 (300 /fb)-1

LHC14 Incline asymmetry: LHC14 Energy asymmetry:
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http://arxiv.org/abs/1305.3272
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Top forward-backward asymmetry in
ttbar + jet final state

e Top asymmetry at 100 TeV, very preliminary numbers by
Berge, Westhoff:

O

Higher energies means more gg "background”, --> hard
cuts to enhance top asymmetry

Requires large amounts of integrated luminosities

energy asymmetry of ~ 8% require jets |y| < 5 (its 3.5% for

ly|<2.5)
work in progress...very preliminary: not much advantage



Backup



Top Polarization

e Potential Snowmass study for top polarization at LHC14
o No deviation from SM top polarization in LHC7, limited by
systematic uncertainties
o Constrain e.g. axi-gluon models (can explain the forward-
backward asymmetry at the Tevatron)



