

αs at an e⁺e⁻ Z factory

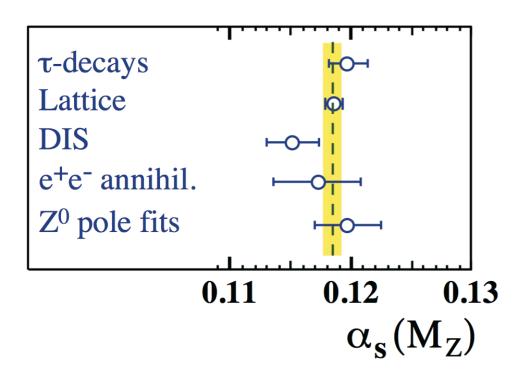
some personal thoughts, plus input from discussion with Th. Gehrmann (UZH)

G. Dissertori ETH Zürich

July 2013

Recent summary from the PDG

see Bethke, Dissertori, Salam: http://pdq.lbl.gov/2012/reviews/rpp2012-rev-gcd.pdf



current world average:

$$\alpha_{\rm S}(\rm M_{\rm Z}) = 0.1184 \pm 0.0007 \quad (0.6 \% \text{ rel.})$$

- central value rather insensitive to choice of input
- uncert. dominated by Lattice results (~0.6% rel.)

Question:

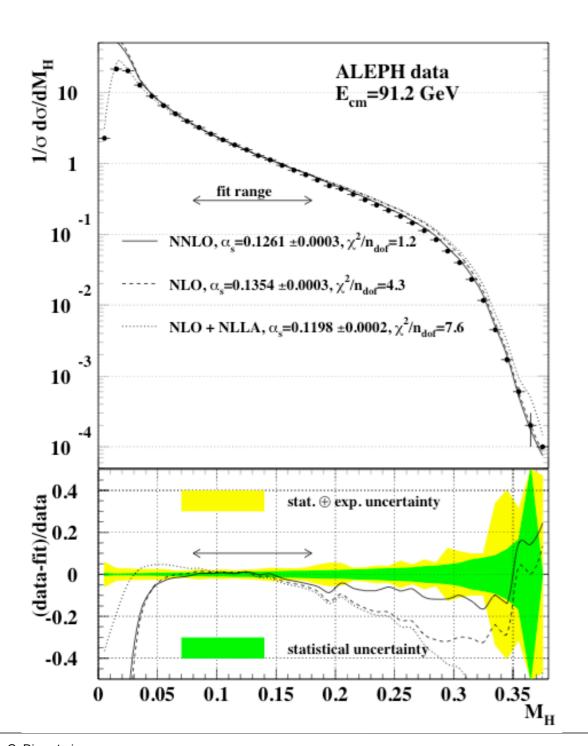
what is interesting (or realistic) goal to take as reference for this discussion?

Let's choose: 0.0001 (abs) or ~0.1 % (rel)

let's focus at **Z** peak measurements, in order to have an independent $\alpha_s(M_7)$ as input, eg., for m_{top} determination at ttbar threshold of an e⁺e⁻ machine.

Jet rates, event shapes

"Classical" method, theory known at NNLO+NNLL (NNLO obtained only a few years ago). Current status, typical values:



- Experimental Uncertainties
- ypically ~1% (improvements should be possible)
- Hadronization Uncertainties
- difference between various models for hadronization,
- typically around 0.7 1.5 %
 - going well below 1% seems unrealistic
- Theoretical Uncertainties (pQCD)
- renormalization scale variation, matching of (N)NLO with resummed calculation, quark mass effects
- typically 3 5 %
 - going well below 1% seems unrealistic
 - my conclusion: this is not the way to go

- Advantage of inclusive observables:
 - by now known to NNNLO!
 - non-perturbative effects strongly suppressed

$$R_{\rm exp} = \frac{\Gamma(Z \to {\rm hadrons})}{\Gamma(Z \to {\rm leptons})} = R_{EW} (1 + \delta_{QCD} + \delta_m + \delta_{np})$$

$$\frac{R_{\rm exp}}{R_{EW}} = \mathcal{O}(1)$$

- Advantage of inclusive observables:
 - by now known to NNNLO!
 - non-perturbative effects strongly suppressed

$$R_{\rm exp} = \frac{\Gamma(Z \to {\rm hadrons})}{\Gamma(Z \to {\rm leptons})} = R_{EW} (1 + \delta_{QCD} + \delta_m + \delta_{np})$$

$$\frac{R_{\rm exp}}{R_{EW}} = \mathcal{O}(1)$$

$$\delta_{QCD} = \sum_{n=1}^{4} c_n \left(\frac{\alpha_s}{\pi}\right)^n + \mathcal{O}(\alpha_s^5)$$

$$c_1 = 1.045 \Rightarrow c_1 \frac{\alpha_s(M_Z)}{\pi} \sim 0.04 = \mathcal{O}(1/25)$$

- Advantage of inclusive observables:
 - by now known to NNNLO!
 - non-perturbative effects strongly suppressed

$$R_{\rm exp} = \frac{\Gamma(Z \to {\rm hadrons})}{\Gamma(Z \to {\rm leptons})} = R_{EW} (1 + \delta_{QCD} + \delta_m + \delta_{np})$$

$$\frac{R_{\rm exp}}{R_{EW}} = \mathcal{O}(1)$$

$$\sim \mathcal{O}\left(\frac{m_q^2}{M_Z^2}\right) \quad \frac{\Delta\alpha_s}{\alpha_s} \approx \mathcal{O}(\text{few}\,\%) \cdot \frac{\Delta\delta_m}{\delta_m}$$
 Th. Gehrmann:

 $lpha_s$ δ_r Th. Gehrmann: calculations can be improved if necessary

$$\delta_{QCD} = \sum_{n=1}^{4} c_n \left(\frac{\alpha_s}{\pi}\right)^n + \mathcal{O}(\alpha_s^5)$$

$$c_1 = 1.045 \Rightarrow c_1 \frac{\alpha_s(M_Z)}{\pi} \sim 0.04 = \mathcal{O}(1/25)$$

- Advantage of inclusive observables:
 - by now known to NNNLO!
 - non-perturbative effects strongly suppressed

$$R_{\rm exp} = \frac{\Gamma(Z \to {\rm hadrons})}{\Gamma(Z \to {\rm leptons})} = R_{EW} (1 + \delta_{QCD} + \delta_m + \delta_{np})$$

$$\frac{R_{\rm exp}}{R_{EW}} = \mathcal{O}(1)$$

$$\delta_{QCD} = \sum_{1}^{4} c_n \left(\frac{\alpha_s}{\pi}\right)^n + \mathcal{O}(\alpha_s^5)$$

$$c_1 = 1.045 \Rightarrow c_1 \frac{\alpha_s(M_Z)}{\pi} \sim 0.04 = \mathcal{O}(1/25)$$

$$\sim \mathcal{O}\left(\frac{m_q^2}{M_Z^2}\right) \frac{\Delta \alpha_s}{\alpha_s} \approx \mathcal{O}(\text{few \%}) \cdot \frac{\Delta \delta_m}{\delta_m}$$

Th. Gehrmann: calculations can be improved if necessary

$$\mathcal{O}\left(rac{\Lambda^4}{M_Z^4}
ight)$$

<< 0.0001, no problem

Example (using NNLO)

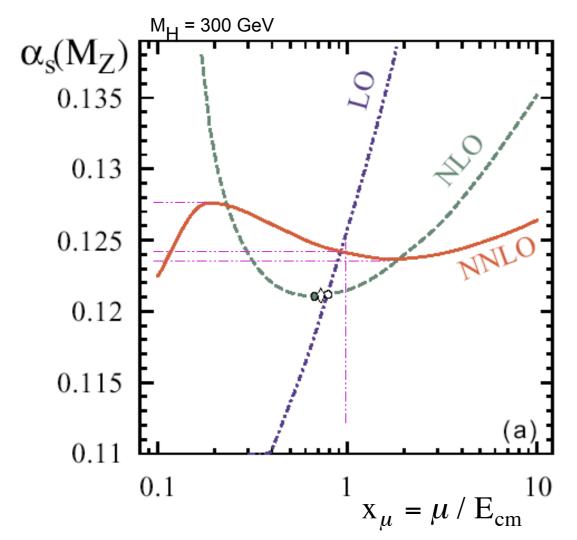
$$rac{\Gamma(Z
ightarrow ext{hadrons})}{\Gamma(Z
ightarrow ext{leptons})} = 20.767 \pm 0.025$$
 (0.12 % rel.)

Example (using NNLO)

$$\frac{\Gamma(Z o \text{hadrons})}{\Gamma(Z o \text{leptons})} = 20.767 \pm 0.025$$
 (0.12 % rel.)

see next slide

$$\alpha_s(M_Z) = 0.1226 \pm 0.0038 \text{ exp.}$$

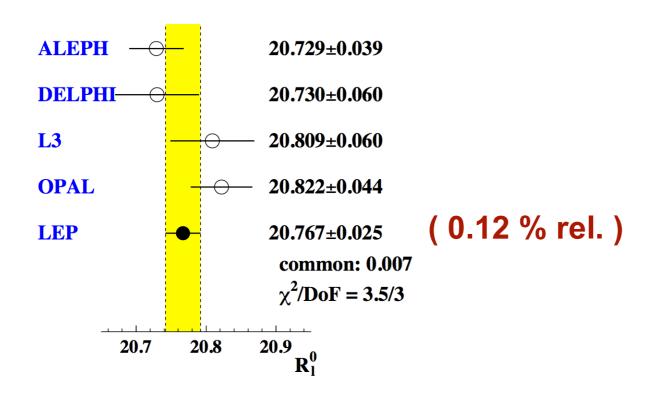


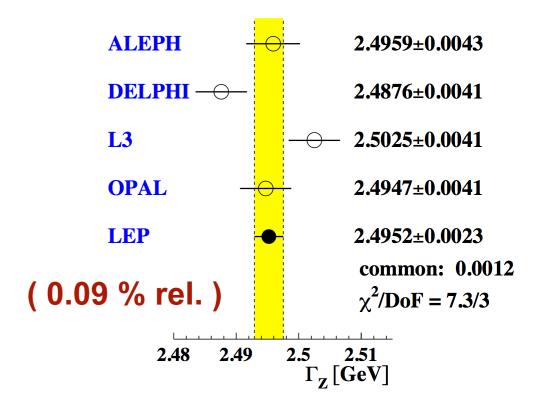
$$^{+0.0028}_{-0.0005}$$
 $\mu = ^2_{0.25}$ M_Z
 $^{+0.0033}_{-0.0}$ $M_H = ^{900}_{100}$ GeV
 ± 0.0002 $M_t = \pm 5$ GeV

 ± 0.0002 renormal. schemes

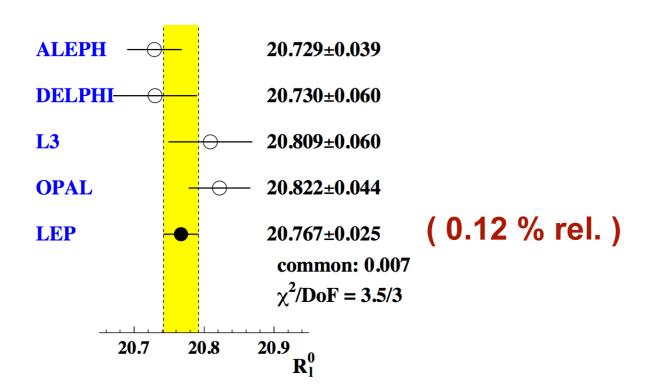
$$=0.1226 \begin{array}{l} +0.0058 \\ -0.0038 \end{array}$$

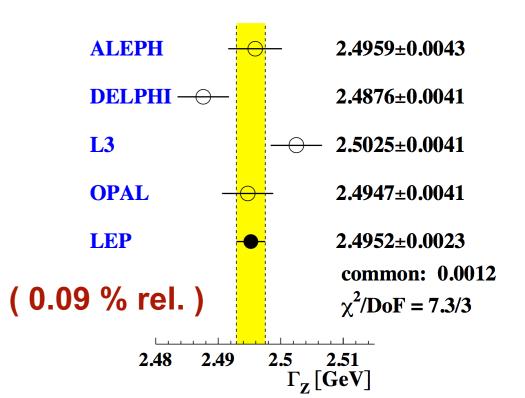
Latest results from LEP EW group





Latest results from LEP EW group





Source	δ	$\Gamma_{ m Z}$	$\sigma_{ m had}^0$	R_ℓ^0	$R_{ m b}^0$	$ ho_\ell$	$\sin^2 heta_{ ext{eff}}^{ ext{lept}}$	$m_{ m W}$
		[MeV]	[nb]					[MeV]
$\Delta lpha_{ m had}^{(5)}(m_{ m Z}^2)$	0.00035	0.3	0.001	0.002	0.00001		0.00012	6
$lpha_{ m S}(m_{ m Z}^2)$	0.003	1.6	0.015	0.020			0.00001	2
$m_{ m Z}$	2.1 MeV	0.2	0.002				0.00002	3
$m_{ m t}$	$4.3 \; \mathrm{GeV}$	1.0	0.003	0.002	0.00016	0.0004	0.00014	26
$\log_{10}(m_{ m H}/{ m GeV})$	0.2	1.3	0.001	0.004	0.00002	0.0003	0.00022	28
Theory		0.1	0.001	0.001	0.00002		0.00005	4
Experiment		2.3	0.037	0.025	0.00065	0.0010	0.00016	34

from slide 4:

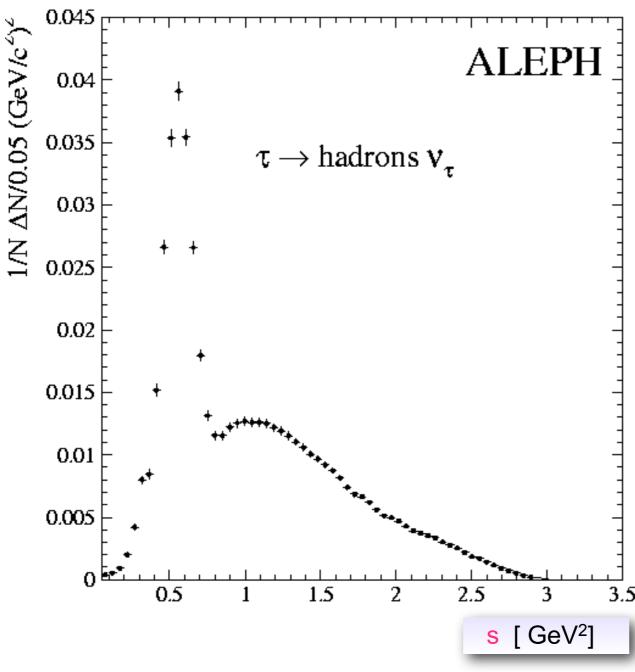
$$\frac{\Delta \alpha_s}{\alpha_s} \approx 25 \cdot \frac{\Delta R_{\rm exp}}{R_{\rm exp}}$$

thus: for a rel. prec. of $\sim 0.1\%$ on α_s we need rel. exp. prec. ~ 25 times better !!

So summarizing

- pQCD scale uncertainty, from latest NNNLO calculation:
 - ~ 0.0002 (absolute uncertainty on α_s), see arXiv:0801.1821 and 1201.5804
- eg. taking Γz: current uncertainty 2.3 MeV
 - ~ 1.2 MeV from beam energy (dominating contribution)
 - remainder: mostly statistical/experimental
 - \geqslant so the question is: can a future Z factory measure Γ_Z at a precision of \sim 0.1 MeV ? or R with an absolute precision of \sim 0.001 ?
- Note: all this is based on the assumption that there are no BSM effects which affect the Z pole observables at this level of precision.

R_T: T hadronic BR



 $s = (invariant mass)^2$ of hadronic decay products

in principle even more inclusive than R at the Z pole, since integrating over hadronic inv. mass spectrum

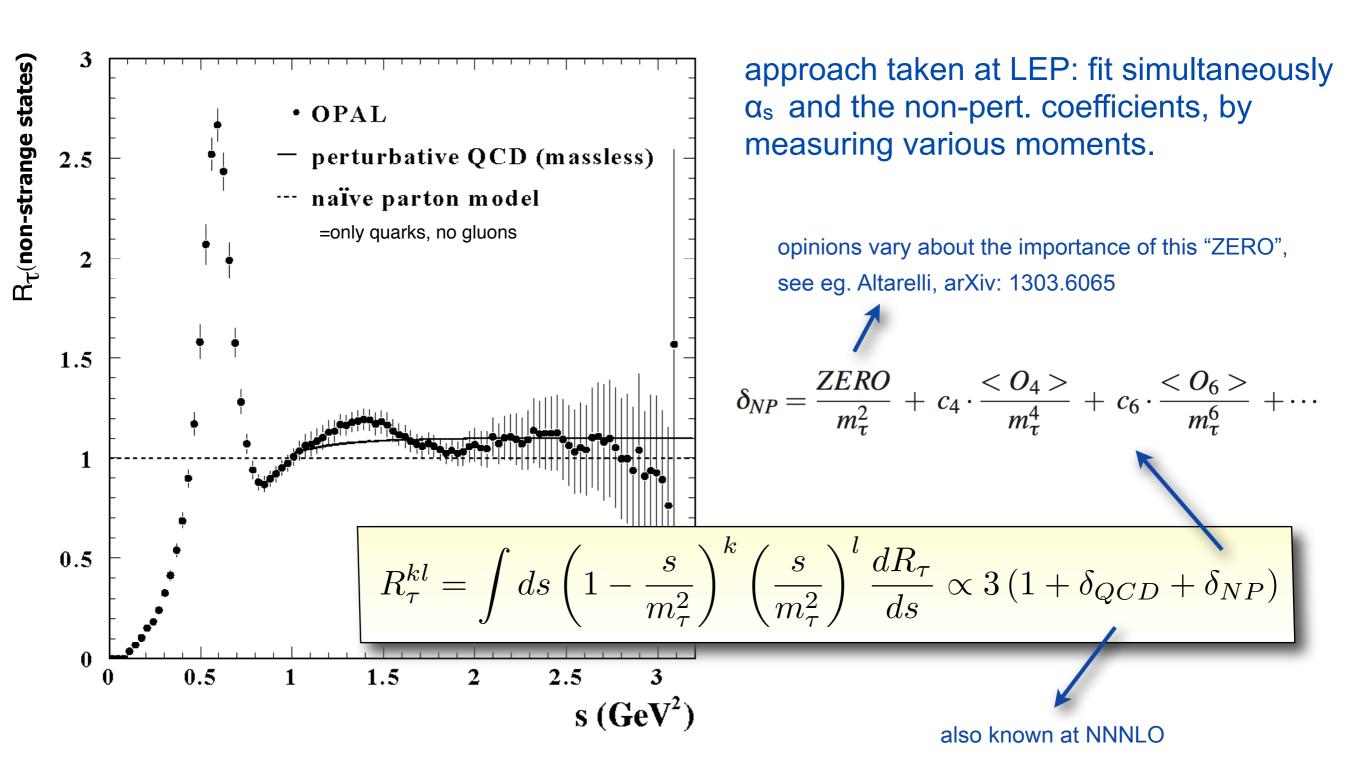
$$R_{\tau} = \frac{1}{\pi} \int_{0}^{m_{\tau}^{2}} \frac{ds}{m_{\tau}^{2}} (1 - \frac{s}{m_{\tau}^{2}})^{2} Im \Pi_{\tau}(s)$$

interesting "advantage": "shrinking" of uncertainty just due to running of α_s :

$$lpha_s(m_ au) = 0.3285 \pm 0.018$$
 (5.5 % rel.) $\alpha_s(m_Z) = 0.1194 \pm 0.0021$ (1.8 % rel.)

The Beauty of a Moment...

Without phase space factor and taking moments, in order to average out resonances:



α_S at the Tau Scale

From moments-measurements at LEP:

the non-perturbative contributions turn out to be (surprisingly) small eg. ALEPH: $\delta_{\rm NP}$ = - 0.0059 ± 0.0014 $\Delta \alpha_s(m_{ au}) pprox \pi \cdot \Delta \delta_{NP}$

it would definitely be interesting to measure such moments again, with much improved precision. Eg. an uncertainty on δ_{NP} of < 0.0005

But:

various methods of estimating higher-order terms (see eg. Altarelli:1303.6065, or Pich:1303.2262) differ by $>\sim 5$ % for $\alpha_s(m_{tau})$, ie. leading to $>\sim 1$ % at the Z mass scale.

Seems difficult (impossible?) to improve on this?

Conclusion

Jet-or event-shape based measurements, as well as using tau decays: seems difficult (impossible?) to go well below the 1% rel. uncertainty.

EWK observables at the Z pole, such as hadronic width (branching ratio): this could be interesting. Depends on the precision on Z line shape observables, which may be achieved by a Z factory