Summary of tt Resonance Searches

Mihailo Backovic (Weizmann), Aaron Effron (Yale), Johannes Erdmann (Yale), Tobias Golling (Yale), Seung Lee (KAIST), Chris Pollard (Duke)

tt Resonances Overview

- Benchmarks
 - Wide resonance: Randall-Sundrum Kaluza-Klein Gluon
 - Narrow resonance: Topcolor Z'
 - Possible additional benchmark: KK gravitons
- Final states to be analyzed:
 - Boosted lepton+jets
 - Boosted all hadronic
- Results for 14 TeV 300/fb vs 3000/fb and 33 TeV 3000/fb planned for Minnesota

L+jets Channel

- European Strategy study, see ATL-PHYS-PUB-2013-003
 - Limits at 95% CL for KK gluons: masses below 4.3 TeV (6.7 TeV) are excluded for 300/fb (3000/fb)

model	$300 \mathrm{fb^{-1}}$	$1000{\rm fb^{-1}}$	$3000{\rm fb^{-1}}$	-
g_{KK}	4.3 (4.0)	5.6 (4.9)	6.7 (5.6)	:
Z'_{topcolor}	3.3 (1.8)	4.5 (2.6)	5.5 (3.2)	(limits in brackets for dilepton channel)

- New for Snowmass: boosted/substructure techniques
- Backgrounds: SM tt̄, W+jets
- Multijet background highly suppressed by lepton requirement
- Full mass reconstruction w/ neutrino pz solution
- Limit setting procedure implemented using Bayesian Analysis Tools (BAT)

Boosted I+jets Selection

- Event selection (unimplemented in red)
- 1 miniisolated lepton with pt > 25 GeV
- 50 GeV of MET
- 1 b-tagged Akt 0.5 jet

- 1 C/A 0.8 jet (hadronic top)
 - pt > 300 GeV
 - mass > 120 GeV
 - Qw > 75 GeV
 - dR(lep, topjet) > 1.0
- 1 Akt 0.5 jet (leptonic top bjet)
 - pt > 50 GeV
 - dR(lep, bjet) < 1.0
 - dR(topjet, bjet) > 1.0

Mini-isolation: pT cone considered for isolation shrinks with pT of lepton Q_w: invariant mass of the sub-jet pair with the lowest mass, see e.g. ATL-PHYS-PUB-2010-008

Boosted I+jets Mass Spectrum

- 14 TeV, 300/fb,<µ>=0
- To do:
 - Look at other signal points/
 benchmarks
 - Add W+jets BG
 - Calculate limits
 and discovery
 reach for all √s, L
 and <µ> scenarios

All-hadronic Channel

- Not yet studied in context of European Strategy
 - Higher branching fraction than I+jets
 - No issue with lepton isolation at high pT
 - Larger multijet background
- Backgrounds: SM tt, multijets
- Multijet background highly suppressed by
 - Top-tagging (jet substructure)
 - B-tagging
- Full mass reconstruction
- Limit setting procedure implemented using Bayesian Analysis Tools (BAT)

Boosted all-hadronic Selection

- Preselection: 2 C/A 0.8 jets
 - pT > 750 GeV
 - $|\eta|$ < 2.0
- Choose top-tagging by cutting on substructure
- Optimize using S / sqrt(B) [plot shows y-axis in a.u.]: invariant mass
- \rightarrow cut at m > 160 GeV
- Degradation of performance with increasing PU

Boosted all-hadronic Selection

- Preselection: 2 C/A 0.8 jets
 - pT > 750 GeV
 - $|\eta|$ < 2.0
- Choose top-tagging by cutting on substructure
- Optimize using S / sqrt(B) [plot shows y-axis in a.u.]: Qw = minimum di-subjet inv. mass

- additional cuts on splitting scales do not help
- plan to use N-subjets and N-subjettiness, but not yet available in our format

Boosted all-hadronic: b-tagging

- b-tagging efficiency vs. p_T (default Delphes working point)
- Does not look realistic ... (does not drop for large pt)
- Require 2 b-tags (b-tagged akt5 jet overlapping with C/A 0.8 jet)

- Low MC statistics : take average efficiency for ttbar and QCD samples and weight by efficiency squared
- Will also try more realistic b-tagging efficiency curve

Boosted all-hadronic: Prelim. Results

• invariant di-fatjet mass for 300 fb-1 (Z' scaled up by factor 5)

- define signal mass window as 2500 3500 GeV for 3 TeV Z'
- limit setting code using Bayesian Analysis Toolkit
- 95% CL limit for 300 fb⁻¹ for 3 TeV Z': 1.8 σ_{SM}
- 3000 fb⁻¹: 0.5 σ_{SM}
- These are preliminary limits ...
 - stat. uncertainty only!
 - expected to improve top-tagging and to worse b-tagging at high p_T (realistic!)

Summary & Outlook

- Search for tt resonances in I+jets and all-hadronic final states in full swing
 - optimized event selection, new: substructure
 - exercised the full chain (including limits) for 3 TeV Z'

Next steps

- Generate 2, 4, 5 TeV mass points for Z': ~ 1 week
- Run KK graviton samples through Delphes : 1 − 2 weeks
- Run over (large) W+jets BG samples: 1 2 weeks
- Calculate more substructure variables (e.g. N-subjettiness) and improve top-tagging
- Additional top-tagging studies in progress (not shown here): Template Overlap Method for hadronic and semileptonic top decays
- In addition: choose more realistic b-tagging efficiency curve
- Include a limited set of dominant systematics (QCD multijet normalization, JES, btagging)
- Expect to have expected cross-section and mass reaches in time for Minnesota!

No show-stoppers for Minnesota!