Top quark rare decays

on behalf of Nathaniel Craig and Mayda Velasco presented by Jure Zupan

The top FCNC era

- Flavor violation in the top sector is poorly constrained, but one of the most likely flags of new physics.
- The LHC is a top factory, already making considerable progress improving top FCNC measurements, with much more to come.
- Future colliders have comparable sensitivity in certain top FCNC channels.
- The era of top FCNC has arrived!

The top FCNC charge

The charge for Snowmass:

- Does the top quark decay to exotic final states? SM-like or BSM-like? How well can these decays be measured/constrained at hadron and lepton colliders?
- What sensitivity needs to be reached for these decays in order to have a significant impact on models of physics beyond the SM?

Effective lagrangian for top FCNC

$$\mathcal{L}_{\text{eff}} = \frac{v}{\Lambda^2} \left(b_{LR}^Z \mathcal{O}_{LR}^Z + b_{LR}^\gamma \mathcal{O}_{LR}^\gamma + b_{LR}^g \mathcal{O}_{LR}^g \right) + \frac{v^2}{\Lambda^2} \left(a_L^Z \mathcal{O}_L^Z + a_{LR}^h \mathcal{O}_{LR}^h \right) + L \leftrightarrow R + h.c.$$

Dimension 5

$\mathcal{O}_{LR}^{Z} = \frac{2e}{\sin 2\theta_W} (\bar{q}_L \sigma^{\mu\nu} t_R) Z_{\mu\nu}$ $\mathcal{O}_{LR}^{\gamma} = e (\bar{q}_L \sigma^{\mu\nu} t_R) F_{\mu\nu}$ $\mathcal{O}_{LR}^{g} = g_s (\bar{q}_L \sigma^{\mu\nu} T^a t_R) G_{\mu\nu}^a$

Dimension 4

$$\mathcal{O}_{L}^{Z} = \frac{2e}{\sin 2\theta_{W}} (\bar{q}_{L}\gamma^{\mu}t_{L}) Z_{\mu}$$
$$\mathcal{O}_{LR}^{h} = (\bar{q}_{L}t_{R})h$$

Look for $t \to Zq, t \to gq, t \to \gamma q, t \to hq$

Motivated signals

Process	SM	2HDM(FV)	2HDM(FC)	MSSM	RPV	RS
$t \to Zu$	7×10^{-17}	<u> </u>	_	$\lesssim 10^{-7}$	$\lesssim 10^{-6}$	_
$t \to Zc$	1×10^{-14}	$\lesssim 10^{-6}$	$\lesssim 10^{-10}$	$\lesssim 10^{-7}$	$\lesssim 10^{-6}$	$\lesssim 10^{-5}$
$t \rightarrow gu$	4×10^{-14}	_	_	. •	$\lesssim 10^{-6}$	
$t \rightarrow gc$	5×10^{-12}	$\lesssim 10^{-4}$	$\lesssim 10^{-8}$	$\lesssim 10^{-7}$. •	$\lesssim 10^{-10}$
$t \to \gamma u$	4×10^{-16}	_	_	$\lesssim 10^{-8}$	$\lesssim 10^{-9}$	
$t \rightarrow \gamma c$	5×10^{-14}	$\lesssim 10^{-7}$	$\lesssim 10^{-9}$	$\lesssim 10^{-8}$	$\lesssim 10^{-9}$	$\lesssim 10^{-9}$
$t \to hu$	2×10^{-17}	6×10^{-6}	_	$\lesssim 10^{-5}$	$\lesssim 10^{-9}$	_
$t \rightarrow hc$	3×10^{-15}	2×10^{-3}	$\lesssim 10^{-5}$	$\lesssim 10^{-5}$	$\lesssim 10^{-9}$	$\lesssim 10^{-4}$

- SM rate is tiny due to GIM suppression, so any signal is an indication of new physics.
- Motivated new physics scenarios can generate branching ratios as large as 10⁻⁴-10⁻⁵ consistent with direct limits on new states.
- Correlations among different signals allows differentiation of various scenarios.

Current limits

Process	Br Limit	Search	Dataset
$t \to Zq$	7×10^{-4}	$\overline{\text{CMS } t\overline{t}} \to Wb + Zq \to \ell\nu b + \ell\ell q$	$19.5 \text{ fb}^{-1}, 8 \text{ TeV}$
t o Zq	7.3×10^{-3}	ATLAS $t\bar{t} \to Wb + Zq \to \ell\nu b + \ell\ell q$	$2.1 \text{ fb}^{-1}, 7 \text{ TeV}$
$t \to gu$	5.7×10^{-5}	ATLAS $qg \to t \to Wb$	$2.05 \text{ fb}^{-1}, 7 \text{ TeV}$
$t \rightarrow gc$	2.7×10^{-4}	ATLAS $qg \to t \to Wb$	$2.05 \text{ fb}^{-1}, 7 \text{ TeV}$
$t \rightarrow \gamma u$	6.4×10^{-3}	ZEUS $e^{\pm}p \to (t \text{ or } \bar{t}) + X$	$474 \text{ pb}^{-1}, 300 \text{ GeV}$
$t \rightarrow \gamma q$	3.2×10^{-2}	$CDF \ t\bar{t} \to Wb + \gamma q$	$110 \text{ pb}^{-1}, 1.8 \text{ TeV}$
$t \to hq$	2.7×10^{-2}	$CMS^* t\bar{t} \to Wb + hq \to \ell\nu b + \ell\ell qX$	$5 \text{ fb}^{-1}, 7 \text{ TeV}$
$t \rightarrow \text{invis.}$	9×10^{-2}	$CDF \ t\overline{t} \to Wb$	$1.9 \text{ fb}^{-1}, 1.96 \text{ TeV}$

- Current limits set by a combination of LHC searches and older limits from Tevatron, HERA.
- LHC beginning to overtake existing limits from previous experiments, though some channels await dedicated LHC search results (e.g., $t \rightarrow \gamma q$).
- Current sensitivity at the level of 10^{-4} , though there is substantial reach in $t \rightarrow gq$ from single top production.

LHC projections

Process	Br Limit	Search	Dataset	Source
$t \to Zq$	2×10^{-4}	ATLAS $t\bar{t} \to Wb + Zq \to \ell\nu b + \ell\ell q$	$300 \text{ fb}^{-1}, 14 \text{ TeV}$	ATLAS ESG
$t \to Zq$	7×10^{-5}	ATLAS $t\bar{t} \to Wb + Zq \to \ell\nu b + \ell\ell q$	$3000 \text{ fb}^{-1}, 14 \text{ TeV}$	ATLAS ESG
$t \rightarrow \gamma q$	8×10^{-5}	ATLAS $t\bar{t} \to Wb + \gamma q$	$300 \text{ fb}^{-1}, 14 \text{ TeV}$	ATLAS ESG
$t \rightarrow \gamma q$	3×10^{-5}	ATLAS $t\bar{t} \to Wb + \gamma q$	$3000 \text{ fb}^{-1}, 14 \text{ TeV}$	ATLAS ESG
$t \rightarrow gu$	4×10^{-6}	ATLAS $qg \to t \to Wb$	$300 \text{ fb}^{-1}, 14 \text{ TeV}$	Extrap.
$t \rightarrow gu$	1×10^{-6}	ATLAS $qg \to t \to Wb$	$3000 \text{ fb}^{-1}, 14 \text{ TeV}$	Extrap.
$t \to gc$	1×10^{-5}	ATLAS $qg \to t \to Wb$	$300 \text{ fb}^{-1}, 14 \text{ TeV}$	Extrap.
$t \rightarrow gc$	4×10^{-6}	ATLAS $qg \to t \to Wb$	$3000 \text{ fb}^{-1}, 14 \text{ TeV}$	Extrap.
$t \rightarrow hq$	2×10^{-3}	LHC $t\bar{t} \to Wb + hq \to \ell\nu b + \ell\ell qX$	$300 \text{ fb}^{-1}, 14 \text{ TeV}$	Extrap.
$t \rightarrow hq$	5×10^{-4}	LHC $t\bar{t} \to Wb + hq \to \ell\nu b + \ell\ell qX$	$3000 \text{ fb}^{-1}, 14 \text{ TeV}$	Extrap.
$t \rightarrow hq$	5×10^{-4}	LHC $t\bar{t} \to Wb + hq \to \ell\nu b + \gamma\gamma q$	$300 \text{ fb}^{-1}, 14 \text{ TeV}$	Extrap.
$t \rightarrow hq$	2×10^{-4}	LHC $t\bar{t} \to Wb + hq \to \ell\nu b + \gamma\gamma q$	$3000 \text{ fb}^{-1}, 14 \text{ TeV}$	Extrap.

- 14 TeV LHC capable of setting limits as far down as 10⁻⁶ in certain channels.
- Expect a factor of ~2-3 improvement in going to high luminosity.

LHC projections

- The "ATLAS ESG" limits are based on the ATLAS
 projections for the European Strategy Group. These
 should be updated by dedicated ATLAS studies of 14 TeV
 sensitivity by Minneapolis.
- "Extrapolated" limits are preliminary, based on naive theory scaling of relevant cross sections and luminosity from current searches at 7 and 8 TeV. These estimates will be refined by the ATLAS and CMS groups responsible for the relevant 7 and 8 TeV searches by Minneapolis, but no additional dedicated studies underway.
- If additional resources are available, dedicated 14 TeV studies of $t \to hq, t \to gq$ would be extremely useful.

ILC projections

Process	Br Limit	Search	Dataset	Reference
$t \to Zq$	$5(2) \times 10^{-4}$	ILC single top, γ_{μ} $(\sigma_{\mu\nu})$	$500 \text{ fb}^{-1}, 250 \text{ GeV}$	Extrap.
$t \to Zq$	$1.5(1.1)\times10^{-4(-5)}$	ILC single top, γ_{μ} $(\sigma_{\mu\nu})$	$500 \text{ fb}^{-1}, 500 \text{ GeV}$	TESLA study
$t \to Zq$	$1.6(1.7) \times 10^{-3}$	ILC $t\bar{t}$, γ_{μ} $(\sigma_{\mu\nu})$	$500 \text{ fb}^{-1}, 500 \text{ GeV}$	TESLA study
$t \rightarrow \gamma q$	6×10^{-5}	ILC single top	$500 \text{ fb}^{-1}, 250 \text{ GeV}$	Extrap.
$t \rightarrow \gamma q$	6.4×10^{-6}	ILC single top	$500 \text{ fb}^{-1}, 500 \text{ GeV}$	TESLA study
$t \to \gamma q$	1.0×10^{-4}	ILC $t \bar{t}$	$500 \text{ fb}^{-1}, 500 \text{ GeV}$	TESLA study

- The ILC offers useful complementarity to the LHC, particularly for FCNC involving photons and Z bosons.
- The greatest sensitivity arises in single top channels, which can be probed even at $\sqrt{s}=250\,$ GeV; allows useful probe of top physics at the earliest stage of ILC operation.
- In contrast to LHC, can differentiate between different Lorentz structures and hence dim-4 or dim-5 operators.

ILC projections

- The "TESLA study" limits are based on '01 TESLA studies at $\sqrt{s}=500$ GeV that in turn form the basis for sensitivity estimates in the ILC RDR.
- "Extrapolated" limits are based on a conservative rescaling of e^+e^- studies at $\sqrt{s}=192\,$ GeV to the first stage of ILC operation at $\sqrt{s}=250\,$ GeV and could be substantially improved by a dedicated study.
- Given that searches for top FCNC in single top production would provide useful sensitivity to new physics in the top sector during the initial stages of ILC operation, a dedicated study would be extremely useful.

Summary

- Rare decays of the top can be measured down to the 10⁻⁶ level at the LHC and ILC.
- The LHC provides coverage of all top FCNC modes.
- The ILC provides comparable sensitivity to modes involving photons or Z bosons, with the capacity to probe the Lorentz structure of the coupling.
- Even operating at 250 GeV, the ILC can set meaningful limits on rare decays via single top production.
- If additional resources are available before the Minneapolis meeting, dedicated study of $t \to Zq, t \to \gamma q$ at 250 GeV ILC and dedicated study of $t \to hq, t \to gq$ at 14 TeV LHC would be extremely useful.