ILC overview in top quark physics

What is the motivation?

- We have a Higgs! That's great.
- Why do we need to know all its properties with best precision? Because that's the bridge between 'micro' and 'macro' cosmos.
- We have the Top! That's great.
- Why do we need to know all its properties with best precision? Because that's the bridge to understand dynamics of EWSB.
- Excellent top physics at LHC (and HL-LHC) That's great!
- Do we really also need the LC?

...a great chance might just be ahead....

Very encouraging politics!

Possible Timeline

- July 2013
 - Non-political evaluation of 2 Japanese candidate sites complete, followed by down-selecting to one
- End 2013
 - Japanese government announces its intent to bid
- 2013~2015
 - Inter-governmental negotiations
 - Completion of R&Ds, preparation for the ILC lab.

2023

2030?

- ~2015
 - Inputs from LHC@14TeV, decision
- 2015~16
 - Construction begins (incl. biddin
- 2026~27
 - Commissioning

2015 □s=13~14 TeV, L~1x10³⁴ cm⁻² s⁻¹, bunch spacing 25 ns 2016 2017 Injector and LHC Phase-1 upgrade to full design luminosity 2018 LS2 2019 \Box s=14 TeV, L~2x10³⁴ cm⁻² s⁻¹, bunch spacing 25 ns 2020 2021 HL-LHC Phase-2 upgrade, IR, crab cavities? 2022 LS3

□s=14 TeV, L=5x10³⁴ cm⁻² s⁻¹, luminosity levelling

But is it justified by physics?

-350 fb-1

~3000 fb

LHC timeline

~75-100 fb

Preface

- Discovery of a SM-like Higgs around m_H~125 GeV
 - Is an absolute revolution!
 - Completely new type
 - Not clear whether a SM-Higgs

The properties of the Higgs boson, to be discovered at the LHC, must be thoroughly investigated in a good condition at the ILC'
(K. Kawagoe, Feb 12)

In short -- some LC capabilities:

As e.g. $\Delta m_{top} \sim 0.1$ GeV, $coup_{tth} \sim 5\%$ H: BR's ~ 1 (b)-7(c)% , $\Gamma_h \sim 3\%$, $\Delta \lambda \sim 18\%$, CP, mixed states

- Very active: many new LC studies and reports....
 - ILC TDR (since June 12, 2013)
 - CLIC CDR 2012
 - Collection of LC notes (DESY123h) online
 - 2 more LC reviews under work

Focus of my talk

(in p. 1st article in
Desy123h, 1210.0202)

The LC physics offer

Staged approach:

- √s=250 GeV, `Higgs cross section, mass + couplings'
- √s=350 GeV, `Higgs width + top mass'
- $-\sqrt{s}$ =500 GeV, `Special Higgs- and top couplings+BSM'
- (\sqrt{s} =91 GeV, `Precision frontier + indirect BSM frontier')
- √s≥1000 GeV, `Closing the Higgs picture+more BSM? '
- New' features, impact on 'quality' (and quantity):
 - Flexible precise energy
 - Perform threshold scans
 - Polarized e- and e+ beams

'New tools': Qualitative P(e+) effects

Access to chirality

In practically all new physics models

- Chirality of particles/interactions has to be identified
- Since for E>>m: chirality = helicity = polarization
- Access to specific asymmetries (\tilde{v} , heavy leptons, ..., see LC notes)

$$A_{\rm double} = \frac{\sigma(P_1, -P_2) + \sigma(-P_1, P_2) - \sigma(P_1, P_2) - \sigma(-P_1, -P_2)}{\sigma(P_1, -P_2) + \sigma(-P_1, P_2) + \sigma(P_1, P_2) + \sigma(-P_1, -P_2)},$$

- Exploitation of transversely-polarized beams (~ P_{e-} P_{e+})
 - Access to tensor-like interactions (Extra dimensions, etc.)
 - Access to CP-violating phenomena
 - Access to specific triple gauge couplings
 - Optimize top quark polarization

Top production at the LC

- Top very special role: heaviest fundamental fermion
 - most strongly coupled to EWSB sector,
 - Intimately related to the dynamics behind the SB mechanism
 - $-M_{top}$ affects M_H , M_W , M_Z via radiative corrections
- At LHC/Tevatron: Δm_{top}~1 GeV
 - Crucial: relation between measured mass to a well-defined parameter that is a suitable theoretical input, as MS mass
 - Relation affected by non-perturbative contr. = limiting factor
- At the LC, e+e- -> t t: measure 'threshold mass'
 - Relation to well-defined m_{top}, theoret. well under control
 - Threshold scan: ∆m_{top}~100 MeV

Top mass

- Threshold scan: depends on m_{top} , T_{top} , α_s
- Cross section σ(e+e- -> t t): color singlet tt bound state
 - experimentally very clean, s-wave state
 - Theoretically clean w.r.,t. non-perturbative effects

$$R \equiv \frac{\sigma(e^+e^- \to t\bar{t})}{\sigma_0} = \left(\frac{6\pi N_c e_t^2}{m_t^2}\right) \operatorname{Im} G_c(\vec{0}, \vec{0}; E + i\Gamma_t)$$

Coulomb Green function, related to Coulomb wave functions:

$$G_c(\vec{0}, \vec{0}; E + i\Gamma_t) = \sum_n \frac{\psi_n(0)\psi_n^*(0)}{E_n - E - i\Gamma_t} + \text{non-pole.}$$
 $|\psi_n(0)|^2 = (m_t \alpha_s C_F)^3/(8\pi n^3)$

- Resonance structure washed out by large with~1.5 GeV
- Precise theory predictions needed to extract m_{top}, T_{top}, α_s

Top mass

Threshold scan:

Important shift due to non-logarithmic NNNLO terms

- LC: Peak position remains stable: m_t=100 MeV
- includ. exp uncertainty of ~30 MeV + theo. uncertainty ~70 MeV
- expected accuracy confirmed by full simulation studies!
- Dedicated threshold scan required with about ~100fb⁻¹

Top electroweak coupling

- √s=500 GeV: top electroweak couplings:
 - expected to be sensitive to BSM sources
 - Measurement of 'g_{ttZ}' and 'g_{tty}' rather unique for a LC!
- Study: e+e- -> tt -> | vbbqq

Born level

'higher order' contr. Subdominant, since α_{EW} dependent

Parametrization via form factors

$$\mathcal{F}_{ij}^{L} = -F_{ij}^{\gamma} + \left(\frac{-\frac{1}{2} + s_{w}^{2}}{s_{w}c_{w}}\right) \left(\frac{s}{s - m_{Z}^{2}}\right) F_{ij}^{Z}$$

$$\mathcal{F}_{ij}^{R} = -F_{ij}^{\gamma} + \left(\frac{s_{w}^{2}}{s_{w}c_{w}}\right) \left(\frac{s}{s - m_{Z}^{2}}\right) F_{ij}^{Z},$$

Top electroweak coupling

- $\sqrt{s}=500$ GeV: chiral structure of top couplings
 - Cross section ~maximal at this energy
 - Top's have sufficient velocity
 - A_{FR} well developed
- Use different observables
 - Cross section
 - A_{FB}
 - helicity angle

Coupling	SM value	LHC [1]	$e^{+}e^{-}$ [6]	$e^+e^-[ILC\ DBD]$
		$\mathcal{L} = 300 \text{ fb}^{-1}$	$\mathcal{L} = 300 \; \text{fb}^{-1}$	$\mathcal{L} = 500 \; \text{fb}^{-1}$
			$\mathcal{P}, \mathcal{P}' = -0.8, 0$	$\mathcal{P},\mathcal{P}'=\pm0.8,\mp0.3$
$\Delta \widetilde{F}_{1V}^{\gamma}$	0.66	$^{+0.043}_{-0.041}$	_	$^{+0.002}_{-0.002}$
$\Delta \widetilde{F}_{1V}^{Z}$	0.23	$^{+0.240}_{-0.620}$	$^{+0.004}_{-0.004}$	$^{+0.003}_{-0.003}$
$\Delta \widetilde{F}_{1A}^{Z}$	-0.59	$^{+0.052}_{-0.060}$	$^{+0.009}_{-0.013}$	$^{+0.005}_{-0.005}$
$\Delta \widetilde{F}_{2V}^{\gamma}$	0.015	$^{+0.038}_{-0.035}$	$^{+0.004}_{-0.004}$	$^{+0.003}_{-0.003}$
$\Delta \widetilde{F}_{2V}^{Z}$	0.018	$^{+0.270}_{-0.190}$	$^{+0.004}_{-0.004}$	$^{+0.006}_{-0.006}$

- Couplings measurable at %-level thanks to
 - the different observables
 - runs with different beam polarization configurations P(e-), P(e+)
 - ----- Powerful test of the chiral structure!

Roman Poeschl, Lyon, Mai 2013

Results of full simulation study for DBD at $\sqrt{s} = 500 \text{ GeV}$

Top Yukawa coupling

- $\sqrt{s}=500$ GeV: top-Yukawa couplings:
 - At this energy: ttH is close to threshold
 - But thanks to threshold effects: σ enhancement by factor 2!
 - Key role in dynamics of ew symmetry-breaking
 - Yukawa couplings: g_{ttH}

LHC estimates: about Δg_{ttH}~10% at HL-LHC (14 TeV, 3000fb⁻¹)

• $\sqrt{s}=1000 \text{ GeV}: \Delta g_{ttH} / g_{ttH} < 4\%$

Top FCNC

- Flavour-changing neutral couplings
 - Relevant for many BSM
 - Can be studied in top pair or single top production

- Using polarized beams (3 σ , based on 300-500 fb⁻¹) :

	unpolarized beams	$ P_{e^-} = 80\%$	$(P_{e^-} , P_{e^+}) = (80\%, 45\%)$		
	$\sqrt{s} = 500 \text{GeV}$				
$BR(t \to Zq)(\gamma_{\mu})$	6.1×10^{-4}	3.9×10^{-4}	2.2×10^{-4}		
$BR(t \to Zq)(\sigma_{\mu\nu})$	4.8×10^{-5}	3.1×10^{-5}	1.7×10^{-5}		
$BR(t \to \gamma q)$	3.0×10^{-5}	1.7×10^{-5}	9.3×10^{-6}		
	$\sqrt{s} = 800 \text{GeV}$				
$BR(t \to Zq)(\gamma_{\mu})$	5.9×10^{-4}	4.3×10^{-4}	2.3×10^{-4}		
$BR(t \to Zq)(\sigma_{\mu\nu})$	1.7×10^{-5}	1.3×10^{-5}	7.0×10^{-6}		
$BR(t \to \gamma q)$	1.0×10^{-5}	6.7×10^{-6}	3.6×10^{-6}		

Exceeding LHC!

At the LC: sensitivty up to 10⁻⁶ to FCNC couplings!

Top polarization

- Top=3rd generation:
 - polarization = analyzing tool for SM/BSM couplings
- With beam polarization:
 - P_{top} can be tuned maximal/minimal

$$A_{FB} = \frac{3}{4} \, \frac{g_{44} + P_{\rm eff} \, g_{14}}{g_{11} + P_{\rm eff} \, g_{41}} = 0.61 \, \frac{1 - 0.27 P_{\rm eff}}{1 - 0.33 P_{\rm eff}} \, .$$

- Left-right asymmetry (at NLO):
- P_{top}=max for P_{eff}~1
 - P_{eff}= -1 favoured (more stable)
- $P_{top}=0$ for $P_{eff}\sim0.4$

Effects of transverse beams \(\sigma_{\sigma} \geq 500 \) GeV

- Transversely-polarized beams in e+e- -> tt
 - probe scalar- and tensor-like interactions

Ananthanarayan, Patra, Rindani

Parametrization via eff. four-Fermi operators:

$$\mathcal{L}^{4F} = \sum_{i,j=L,R} \left[S_{ij}(\bar{e}P_i e)(\bar{t}P_j t) + T_{ij}(\bar{e}\frac{\sigma_{\mu\nu}}{\sqrt{2}}P_i e)(\bar{t}\frac{\sigma^{\mu\nu}}{\sqrt{2}}P_j t) \right]$$

- Use angular distributions with P^T_{e+} P^T_{e+}
 - Sensitive to azimuthal angle: specific asymmetries
 - Assumed 100% beams
- Sensitive to small
 S-,T-admixtures

\sqrt{s}	Case	Coupling	Individual limit from asymmetries				
			$A_1(\theta_0)$	$A_2(\theta_0)$	$A_{1}^{F\;B}\left(\theta_{0}\right)$	$A_2^{FB}\left(\theta_0 ight)$	
		$\mathrm{Re}S$ $\mathrm{Re}T$		$2.3 \times 10^{-3} \text{TeV}^{-2}$		$5.2 \times 10^{-3} \text{TeV}^{-2}$	
500GeV		${\rm Im} T$	$1.2 \times 10^{-3} \text{TeV}^{-2}$		$1.0 \times 10^{-2} \mathrm{TeV}^{-2}$	0.2 X 10 1ev	
		$\mathrm{Im} S$	$2.3 \times 10^{-3} \text{TeV}^{-2}$				
	++	$\mathrm{Re}T$		$1.2 \times 10^{-3} \mathrm{TeV^{-2}}$		$1.0 \times 10^{-2} \text{TeV}^{-2}$	
		${\rm Im}T$			$5.2 \times 10^{-3} \mathrm{TeV^{-2}}$		

What if nothing else than H is found now?

The exciting Higgs story has just started....

- Since m_H is free parameter in SM at tree level
 - Crucial relations exist, however, between m_{top}, m_W and sin²θ_{eff}
 - If nothing else appears in the electroweak sector, these relations have to be urgently checked
- Which strategy should one aim?
 - exploit precision observables and check whether the measured values fit together at quantum level
 - m_Z , m_W , α_{had} , $\sin^2\theta_{eff}$ und m_{top}
- Exploit `GigaZ' option: high lumi run at \sqrt{s} = 91 GeV
 - Pe-=80% and Pe+=60% required !(If only Pe-=90% : precision ~factor 4 less!)

Higgs story has just started ...

LEP:

 $\sin^2\theta_{\text{eff}}(A_{FB}^{\ b}) = 0.23221 \pm 0.00029$

SLC:

 $\sin^2\theta_{\text{eff}}(A_{LR}) = 0.23098 \pm 0.00026$

World average:

 $\sin^2\theta_{\rm eff} = 0.23153 \pm 0.00016$

Goal GigaZ: Δsinθ=1.3 10⁻⁵

Uncertainties from input parameters: Δm_Z, Δα_{had}, m_{top} Heinemeyer, Kraml, Porod, Weiglein

- $\Delta m_7 = 2.1 \text{ MeV}$:
- Δα_{had}~10 (5 future) x 10⁻⁵:
- Δm_{top}~1 GeV (Tevatron/LHC):
- Δm_{top}~0.1 GeV (ILC):

- $\Delta \sin^2 \theta_{eff}^{para} \sim 1.4 \times 10^{-5}$
 - $\Delta \sin^2 \theta_{eff}^{para} \sim 3.6$ (1.8 future)x10⁻⁵
 - $\Delta \sin^2\theta_{eff}^{para} \sim 3x10^{-5}$
 - $\Delta \sin^2 \theta_{eff}^{para} \sim 0.3 \times 10^{-5}$

What else could we learn? $\sqrt{s=91}_{GeV}$

Assume only Higgs@LHC but no hints for SUSY:

– Really SM?

- Help from $\sin^2\theta_{eff}$?

- If GigaZ precision:
 - i.e. Δm_{top} =0.1 GeV...
 - Deviations measurable
- $\sin^2\theta_{eff}$ can be the crucial quantity to reveal effects of NP!

Top Physics at the LC

- The LC offers new tools and a staged approach:
 - Δm_{top}=100 MeV (incl. exp+theo uncertainties), ew coupling @%-level
 - complements and extends the HL-LHC capabilities
 - sensitiv to quantum effects of the top and to BSM@top
- Allows to fully exploit GigaZ! ...keeping our 'savety margin'

