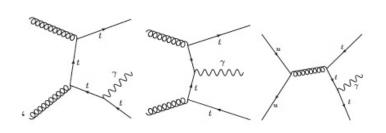
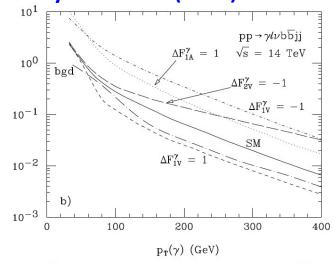
ttbar + Photon / Z – Andrey Loginov, Yale

- MadGraph cross sections (LO)
 - Statistics for the processes is the issue, so need more events
 - Expect smaller systematics for higher pt photons
 - 20 GeV photon pt cut for the ttbar + photon cross section in the table below


\sqrt{s} , TeV	7	8	13	14	33
$\sigma(t\bar{t}\gamma), pb$	0.2753	0.3627	0.9248	1.054	8.394
$\sigma(t\bar{t}Z),\ pb$	0.09705	0.1393	0.5423	0.6571	4.489
$\sigma(t\bar{t}), pb$	93.35	134.7	464.5	554.1	3531


ttbar + Photon

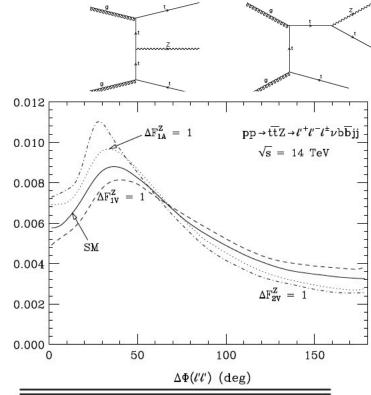
- Sensitive to top charge and to top-photon couplings
- With current 2011 / 2012 data
 - Measure ttbar + photon cross section with 5+ Measure ttbar + photon cross section with 5+ sigma significance (separately in 7 TeV and in 8 TeV data)

 > 14 TeV: LO cross section increases by a
- **7** -> **14** TeV: LO cross section increases by a factor of 5 (MadGraph, photon $p_T > 20$ GeV)
 - Basic idea is to identify photons coming from top (with delta R and invariant / transverse mass cuts), and then look at photon pt distribution to study couplings
 - 300 fb⁻¹: few thousands events expected => couplings measurement, Phys.Rev. D71 (2005) 054013
 - In both lepton + jets and dilepton channels
 - **3000 fb**⁻¹: differential measurements (for instance, couplings as a function of photon p_T)

Phys.Rev. D71 (2005) 054013

coupling	$300 \; {\rm fb^{-1}}$	$3000 \; {\rm fb^{-1}}$
ΔF_{1V}^{γ}	+0.079 -0.045	+0.037 -0.019
ΔF_{1A}^{γ}	$^{+0.051}_{-0.077}$	$^{+0.018}_{-0.024}$
ΔF_{2V}^{γ}	$^{+0.19}_{-0.20}$	$^{+0.12}_{-0.12}$
ΔF_{2A}^{γ}	$^{+0.19}_{-0.21}$	$^{+0.11}_{-0.14}$

Summer 2013


ttbar + V

- ttbar + Z production is directly sensitive to ttZ couplings
- So far only measured the cross section

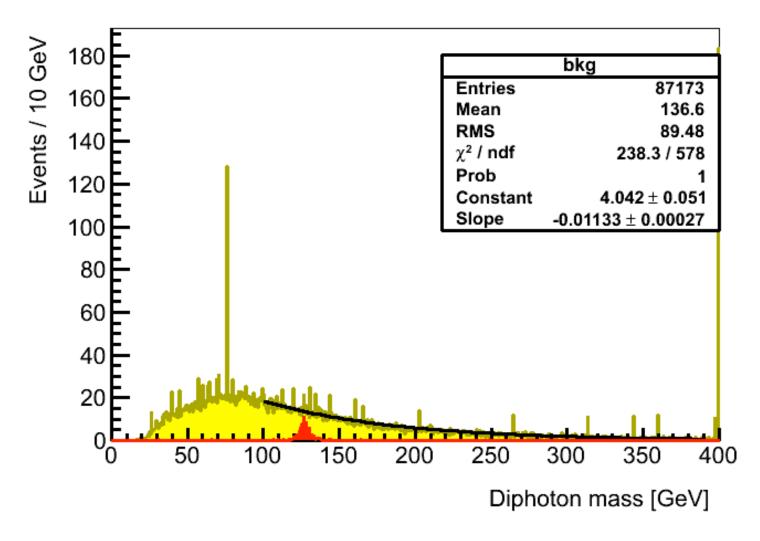
 CMS: arXiv:1303.3239 (submitted to the PRL)

 Dominated by stat. uncertainty So far only measured the cross section

 - Dominated by stat. uncertainty
- 7 -> 8 TeV: ttZ LO xsec increases by ~1.4 (MadGraph) => still limited by statistics
- 7 -> 14 TeV: LO xsec increases by ~10(MadGraph)
 - 300 fb⁻¹: ttZ axial (vector) couplings can be determined with an uncertainty 45-85% (15-20%), Phys.Rev. D71 (2005) 054013
 - **3000 fb**⁻¹: a factor of **3** better
 - Basic idea is look at Z pt distribution and delta phi (leptons) to study couplings

coupling	$300 \; {\rm fb^{-1}}$	$3000 \; {\rm fb^{-1}}$
ΔF_{1V}^{Z}	+0.87 -0.46	$^{+0.62}_{-0.22}$
ΔF_{1A}^Z	$^{+0.15}_{-0.20}$	$^{+0.056}_{-0.074}$
ΔF_{2V}^{Z}	$^{+0.52}_{-0.52}$	$^{+0.30}_{-0.29}$
ΔF^Z_{2A}	$^{+0.54}_{-0.53}$	$^{+0.30}_{-0.31}$

Summer 2013


ttH Higgs decay channels – Jahred Adelman, Yale

- H(bb) is nominally the way to go but it's an extremely challenging measurement requiring the profiling of order(100) nuisance
- parameters and understanding very complex environments with multivariate techniques
- Hard to know if we can trust such a "measurement" for Snowmass, though some folks in the Higgs group are working on it
- Have extrapolations from current measurements from ATLAS and CMS that we can and will make in the white paper
- H(WW) has many final states (SS leptons, taus, 3 leptons, 4 leptons), many of which are being explored, but in the Higgs group
- H(tautau) has a paper that shows excellent prospects at 14 TeV LHC with only 100 fb-1. We can and will quote this paper. Maybe the best channel?
- Not too much in the way of work for LCs, muon colliders or 33 TeV machines
- H(mumu) is underway. Hopefully results for Snowmass. Signal samples being prepared, student is ready for them
- H(di-photon) next

Summer 2013

ttH with H→γγ

ttH - Jahred Adelman

- Studying H→γγ
- Preliminary findings: Possible for 3000 fb⁻¹
- Numbers (within large uncertainties) are the same order of magnitude as ATLAS ES studies
- Outlook:
- To-do: Write up all channels, do best to extrapolate from
- current results for bb
- We (top couplings folks) are working on a joint document

Lepton colliders (from Kaustubh's talk)

- allows study of pure EW top production (no QCD background)
- Beam polarization is major asset: it allows disentangling of top coupling to photon and Z and collecting samples enriched in left/right-handed helicities
- As a result of above, electroweak couplings can be determined at a percent level, allowing probe of new physics as well
- ttH: 11 (4)% (with H bb) at 500 (1000) GeV, with 1000/fb

Other top coupling activities

- Wtb couplings in single top production
 - Single top t-channel cross section → |Vtb|
 - Anomalous Wtb couplings
- See talk by Matt

