ttH, H->bb at 14 and 33 TeV

Ricardo Goncalo¹, Stefan Guindon², Vivek Jain²

¹Royal Holloway, University of London ²University at Albany, State University of New York

Importance of a ttH Measurement

- ttH is a direct measurement of the top-Yukawa coupling
- A parameter of great interest
 - Implications in new physics
- Signal is found in same region (tt + heavy flavour) as vast amount of searches

Royal Holloway

UNIVERSITYATALBANY

State University of New York

- Focus on Higgs decays: H->bb
- Largest BR at m_H of 125 GeV (58 %)

• Moving from 8 TeV to 14 TeV, the ttH cross-section significantly increases

Royal Holloway

7 TeV	8 TeV	14 TeV	33 TeV
.0863 pb	0.1302 pb	0.6113 pb	4.4 pb

• ttH cross-section increases over ttbar cross-section

UNIVERSITY^{AT}**ALBANY**

State University of New York

ttbar cross-section per centre-of-mass energy [Kidonakis, DIS 2012]

7 TeV	8 TeV	14 TeV	33 TeV
163 pb	234 pb	920 pb	5.6 nb

ttH Measurement

- Overview of decay modes of ttbar pair
- Analyses in all three top pair decay modes
- Alljets: largest BF (~ 46 %), 8 jets (4 b and 4 light) with large QCD background
- Lepton+jets: (~ 34 % BF), 6 jets (4 b and two light),
 1 charged lepton, still significant QCD background

 Dilepton: Smallest BF (~ 6 %), 4 jets, all 4 are b quarks, two charged leptons, small QCD background rate

"dileptons"

• Dilepton channel used for this measurement

Royal Holloway

e+jets 15%

State University of New York

UNIVERSITYATALBANY

+jets 15%

"lepton+jets"

Stefan Guindon

4

ATLAS Measurement

ATLAS-CONF-2012-135

- 7 TeV 2011 Analysis using 5 fb⁻¹
- lepton + jets channel only
- H -> bb signal
- Two variables used in fit:
 - H_T of jets
 - mbb from a kinematic fitting tool
- Nine region fit, separated by 5 background and 4 signal regions based on number of jets / b-tags per event
- Observed (expected) limits for mH = 125 GeV
 - 13.1 (10.2) x SM

UNIVERSITYATALBANY

State University of New York

Royal Holloway

m_⊣ [GeV]

CMS Measurement

arXiv:1303.0763

- 7 + 8 TeV 2011 Analysis using 5.0 + 5.1 fb⁻¹
- lepton + jets and dilepton channels only
- All SM Higgs considered signal
- NN is used in both lepton + jets and dilepton channels
 - 10 Variables used as input
- 7 region fit in lepton + jets
- 2 region fit in dilepton channel

Stefan Guindon

• Observed (expected) limits for mH = 125 GeV

June 30 2013

- Focus on a dilepton ttH,H -> bb measurement: 2 oppositely signed leptons and 4 b jets
- Main task: Reduce uncertainty on irreducible tt+HF background

Roval Holloway

• At 8 TeV, $S/\sqrt{B} \sim 0.2$, largest background from tt+HF

		Background	Signal
	1 + 2 b-tags	3 b-tags	≥ 4 b-tags
2 jets	HT		
≥ 3 jets	NN		

- Split fit regions in two for control of ttbar background
- Build a Neural Network to further separate signal from background in signal regions

ttbb ME Contribution

UNIVERSITYATALBANY

State University of New York

- Use *NeuroBayes* to build a Neural Network to better distinguish signal from background
- Exploit kinematic information of the event, as well as b-tagging performance

State University of New York

UNIVERSITYATALBANY

8

Variable	Definition	
b-tag WP	Pseudo-Continuous b-tagging variable based on loose and tight WP	
H ^{tot} _T	Scalar sum of jet p_T and lepton p_T	
Jet \mathbf{p}_T^{1st}	Leading jet p_T	
N _{jets}	Number of Jets	
$\Delta \mathbf{R}(\mathbf{l},\mathbf{j})$	Closest distance of a lepton and jet per event	
$\Delta R(j,j)$	Closest distance of two tagged jets per event	

Royal Holloway

Table 1: The variables considered for use within the Neural Network analysis.

• Try to use variables which are un-correlated and contain the maximum amount of event information

Variables Considered in NN

• Highest ranking variables in order of their separation

test sample stat. only *(mu50)*

UNIVERSITYATALBANY

State University of New York

State University of New York, University at Albany

 $\mathbf{2}$

June 30 2013

Stefan Guindon

Snowmass Seattle Workshop 2013

9

Royal Holloway

Pseudo-Continuous b-tagging

- Potentially very powerful variable is pseudo-continuous b-tagging
- Per event: Separate signal region events by number of loose and tight b-tags
- 10 possible options

Value	# of Loose	# of Tight
0	1	1
1	2	1
2	3	1
3	4 or more	1
4	2	2
5	3	2
6	4 or more	2
7	3	3
8	4 or more	3
9	4 or more	4 or more

UNIVERSITYATALBANY

State University of New York

Royal Holloway

• Tight must be also loose tag

10

- Final discriminant of the NN
- Only training on the test samples:

UNIVERSITYATALBANY

State University of New York

ttbar background

Royal Holloway

- ttH signal
- Very good separation
- Limited amount of signal

Next steps: Look into full dataset variables using Delphes 3.0.9
 Many thanks to the entire production team!

Initial Projections at 8 TeV

- Initial 8 TeV limit projections (σ/σ_{SM} at 95 % C.L.), absence of signal
- \bullet Performed with single variable H_T and conservative systematics estimate

• *σ/σ_{SM} at 95 % C.L. at 8 TeV*

20 /fb	300 /fb	3000 /fb
8.0	1.7	0.2

Royal Holloway

UNIVERSITYATALBANY

State University of New York

- Much better at 14 TeV
- Should expect discovery around 50 - 300 /fb with only the dilepton channel using a NN

• MEM in dilepton channel: S+B excluded at ~ 32 /fb

- Overview of ttH, H->bb measurement for the Snowmass effort
- ttH measurement is important for the understanding of top-Yukawa coupling
 - Will be an important measurement in Phase-II LHC upgrade
 - Potential for direct couplings measurement
- Measurement is performed in the ttbar dilepton decay mode
- Looking at event and kinematic variables to distinguish signal from ttbar background in a Neural Network
- First draft of paper being prepared, ready early next week
- Final report expected by end of July / early August

Royal Holloway

UNIVERSITYATALBANY

State University of New York