ttH in non-bb modes at the LHC

Jahred Adelman, Yuriy Ilchenko, Robert Kehoe, Andrey Loginov, <u>Peter Onyisi</u>, Victor Rodriguez

Seattle, 30 June 2013

Introduction

- ttH production is an important target for the Higgs program
 - only direct probe of the top Yukawa coupling
 - compare to coupling extracted from gluon-gluon fusion production, γγ decay: "tree" versus "loop" measurement
- Massive final state (≥ 470 GeV)
- Here: review studies of ttH production, detected in modes other than H → bb
 - all assumed as SM Higgs
- Many thanks to EF background custodians, and to Sergei Chekanov for helping us with signal simulations

Theoretical Notes

- We're after the Higgs-top coupling κ
- But we measure a cross section ratio σ_{exp}/σ_{theory} ∝κ²
- We need theoretical cross section uncertainties on $\sigma(ttH)$, and differential quantities, at the level of the experimental ones
 - LHC Higgs x-sec WG gives $^{+5.9}_{-9.3}$ % (scale), ± 8.9% (PDF+ α_s) @NLO; ≈ 8% error on coupling common to all channels; improvements needed
- In addition we may need reliable predictions for differential distributions for backgrounds (a la HNNLO)

Cross-Sections

- Determined with Madgraph and aMC @NLO
- Significant scale dependence even at NLO (~5-10%)

Kehoe, Onyisi

Good agreement with LHC Higgs XS WG (611 fb)

Sample	σ (LO)	σ (NLO)	Scale uncert
ttH	428 fb	610 fb	+5.4% -8.8% (NLO)
ttll	(+ up to 2 partons) 74.5 fb	74.1 fb	+57% -24% (LO)
ttW	(+ up to 3 partons) 754 fb	741 fb	
ttWW	10.41	in progress	

ttH – Higgs Pt

- Higgs kinematics not strongly affected by higher order corrections
- Small NLO scale uncertainty may be sufficient
 - But PDF uncertainty significant, also

ttZ Pt Distributions

- Kinematics similar to ttH
 - Aside from M_{II}, of course
- Large LO scale uncertainty
 - Need NLO calculations
 - NLO samples would be useful
 - Too computationally intensive (for Snowmass

$H \rightarrow \gamma \gamma$

- Small branching ratio, but high acceptance & detection efficiency, resonance peak

 Adelman, Loginov
- Select semileptonic tt decays
- Modeling challenge: jet → photon fake rates
 - fake rate derived from Snowmass γ+jet MC, energy scaling with published ATLAS parametrization
 - eff vs. rejection may not be best we can do
- Background dominated by smooth tt+jets

1 e or μ , $p_{T} > 25 \text{GeV}$	MET > 30 GeV
≥ 1 b-tag	2 photons, p _T > 30 GeV
≥ 3 jets, p_T > 35 GeV, $ \eta $ < 2.7	10 GeV γγ mass window

$H \rightarrow \gamma \gamma$

- Project 20 30 % stat uncertainty at 3000 fb⁻¹
 depending on assumed jet rejection
- Statistics-dominated even for HL-LHC

Scenario	Signal	Bkg
Conservative	138	863
Optimistic	137	256

In line with previous ATLAS projections

ttH → multileptons

- Many Higgs decays with leptons in final state
 - WW, ττ, ZZ, μμ
- Exploit by searching for the multileptons + b-jets + light jets signature
 - 2l same-sign, 3l, 4l are possibilities
- Here we show some projections of 3^l
 - 300 fb⁻¹ with μ =50
 - 3000 fb⁻¹ with μ =140
- Using privately-generated 14 TeV Madgraph+Pythia 6 samples for ttH, ttW, ttll, ttWW

Kehoe, Ilchenko, Onyisi, Rodriguez

Pileup and Jets

- Pileup simulation has a huge effect on # of jets, but Delphes does not include any of our experimental tricks to reduce the impact on analyses
 - in particular ATLAS uses a jet-vertex association via track counting which is expected to be somewhat robust
- Jet counting difficult to use
- Not using \mathbb{E}_{τ} at this point

Jet counting

3-lep selection

- Event selection:
 - 3 leptons >= 20 GeV, none between 10 and 20
 - >= 1 b-tag
 - opposite sign, same flavor lepton pairs within 10 GeV of Z pole rejected
 - M(II) of OS lepton pair with smaller $\Delta R < 70$ GeV
- No jet selection applied here; jet counting unreliable without better modeling
 - assume that counting is applied in the real analysis to remove e.g. WZ, ZZ, with 50% efficiency for signal and same S/B
- Assume ttZ, ttW backgrounds normalized from data

Using Higgs Spin Correlation

 Long-established technique in H → WW → ℓνℓν analysis: leptons close together, small M(II)

3-lep Results

- Stat only precision on σ/σ_{SM} :
 - 13% @ 300 fb⁻¹
 - 4% @ 3000 fb⁻¹
 - Systematics-limited "immediately"?
- Detector uncertainties almost certainly dominated by jets and b-tagging
 - in a real analysis with jet counting, energy scale and pileup rejection systematics will become critical; perhaps this can be avoided for a tradeoff in statistics
- Theoretical uncertainties significant

$H \rightarrow \tau \tau$

- Dedicated study @ 14 TeV, scaled to 300 fb⁻¹
- Explores $\tau_{l}\tau_{h}$ and $\tau_{h}\tau_{h}$ final states

Boddy, Farrington, Hays PRD 86, 073009

- some overlap between $\tau_i \tau_k$ and multilepton analysis
- Assumes same tau efficiency/jet rejection at μ =50
- Worried about systematics after 300 fb⁻¹
 - tau performance in HL-LHC conditions?

Final state	Signal	Bkg	stat unc.
$\tau_{l}^{}\tau_{h}^{}$	111	297	24%
$\tau_h^{}\tau_h^{}$	42	126	41%
Naive combo			21%

$H \rightarrow \mu\mu$

- Very stat-limited channel, only accessible at 3000 fb⁻¹
- Studied by ATLAS: ATL-PHYS-PUB-2012-004
- Predict ~ 25% stat uncertainty for HL-LHC

Plans

- Further refinement of analyses
 - e.g. include more official background samples for multileptons analysis
- Closer look at systematics
- More theoretical studies, in particular NLO impact
- Combination?

Summary

- Cross section measurement to < 25% @ 300 fb⁻¹ certainly plausible
 - will require good understanding of jets in a pileup rich environment and some theoretical input
- Improvement for 3000 fb⁻¹ will be systematicsdominated except for γγ, μμ
 - < 20% requires few % uncertainty per jet and theoretical understanding at < 15%
- Translates to Yukawa coupling measurements of O(10%) (perhaps with just with 300 fb⁻¹)
 - for HL-LHC sensitivity need to think a bit harder about systematics

Extra

A note on ttV+jets

• ME+PS LO generators strongly suggest that $\sigma(ttV+N)$ jets) decreases slowly with N

N	σ(ttW+Np)
0	321 fb
1	212 fb
≥ 2	221 fb

• As a result, ttW+2j, ttZ corrections are more significant than inclusive σ might lead you to believe