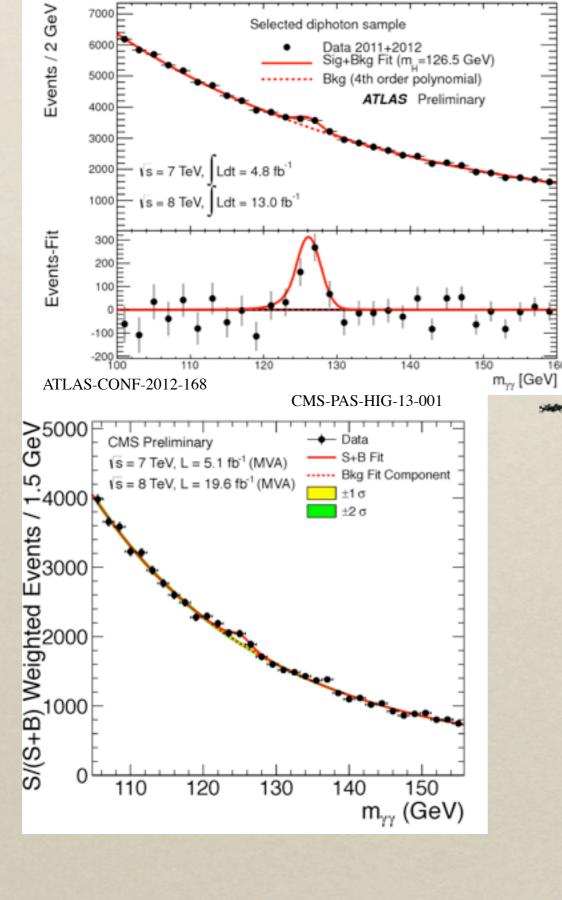
Bounding Higgs Width Through Interferometry

work with:

Lance Dixon - 1305.3854


Lance Dixon and Stefan Höche - ongoing

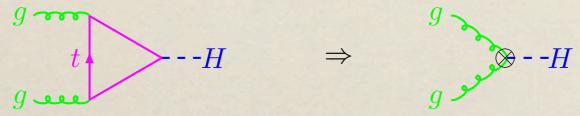
Ye Li

Snowmass Energy Frontier Workshop University of Washington, Seattle June 30, 2013

Selected diphoton sample

7000

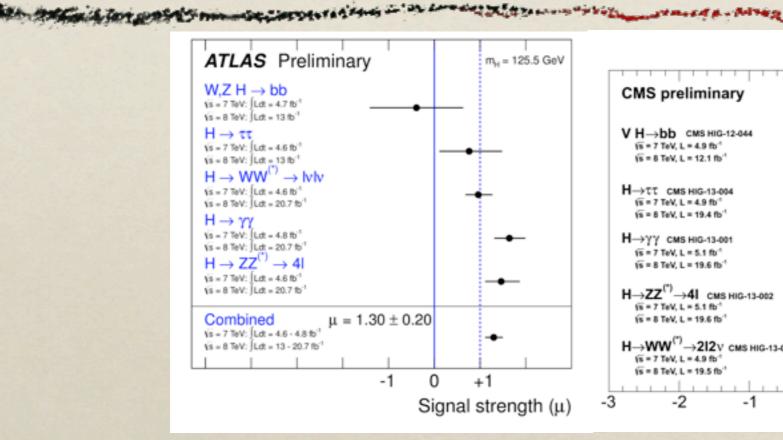
Higgs Boson Discovered!

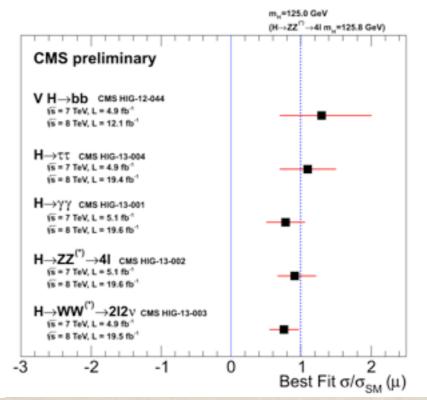

- Biggest discovery in years
- Great achievement of SM
- How much can we learn about Higgs from LHC?

Outline

- Interference in $gg \rightarrow H \rightarrow \gamma \gamma$
- Real part interference: mass shift
- NLO corrections to interference
- Bounding Γ_H using mass shift
- Non-SM Higgs: CP mixed state
- Non-SM Higgs: spin-2 scenario
- Conclusion

Higgs Production

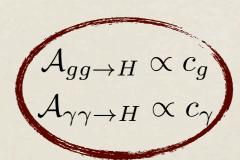

Dominated by gluon fusion through a top quark loop



- To make higher order correction feasible, approximate top quark loop by effective ggH vertex
- Similarly, photon couples to Higgs through top quark and W boson loop, can also be approximated by effective γγH vertex

$$\mathcal{L} = -\left[\frac{\alpha_s}{8\pi}c_9b_gG_{a,\mu\nu}G_a^{\mu\nu} + \frac{\alpha}{8\pi}c_9b_\gamma F_{\mu\nu}F^{\mu\nu}\right]\frac{h}{v}$$

Higgs Decay


- For m_H ~ 125GeV, Higgs resonance is weak
- Diphoton decay
 - excellent experimental photon energy resolution $\Rightarrow \gamma \gamma$ signal visible even though $Br(H \rightarrow \gamma \gamma) \sim 0.0023$
 - fully reconstructed invariant mass

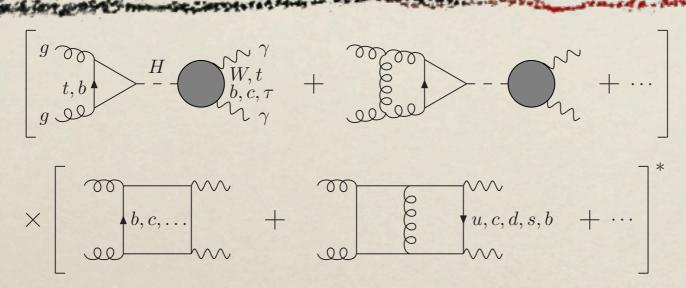
- o large SM background
- data in reasonable agreement with SM prediction
- Additional invisible/
 undetectable decay channels
 could increase Higgs total
 width and reduce γγ BR

Full Diphoton Amplitude

o Gluon pair to diphoton full amplitude

$$\mathcal{A}_{gg o \gamma\gamma} = -rac{\mathcal{A}_{gg o H} \mathcal{A}_{\gamma\gamma o H}}{M_{\gamma\gamma}^2 - m_H^2 + i m_H \Gamma_H} + \mathcal{A}_{\mathrm{cont}}$$
 $\mathcal{A}_{gg o H} \propto c_g$
in all appears as resonance in diphoton

 Higgs signal appears as resonance in diphoton invariant mass $M_{\gamma\gamma}$ spectrum


$$S \sim |\mathcal{A}_{gg \to H} \mathcal{A}_{\gamma\gamma \to H}|^2$$

Signal strength in narrow width approximation

$$\sigma^{sig} = \int dM_{\gamma\gamma} \frac{S}{(M_{\gamma\gamma}^2 - m_H^2)^2 + m_H^2 \Gamma_H^2} \sim \begin{array}{c} C_g^2 c_\gamma^2 \\ \hline \Gamma_H \end{array} \longrightarrow \begin{array}{c} \textit{Always appears} \\ \textit{as a combo!} \end{array}$$

- o In SM, all Higgs properties dictated by m_H, how well can we test them at LHC?
- Need to decouple width from couplings in LHC

Interference

L.Dixon, M.Siu, hep-ph/0302233

o The interference contribution

$$-2m_{H}\Gamma_{H}\frac{\operatorname{Im}(\mathcal{A}_{gg\to H}\mathcal{A}_{\gamma\gamma\to H}\mathcal{A}_{\operatorname{cont}}^{*})}{(M_{\gamma\gamma}^{2}-m_{H}^{2})^{2}+m_{H}^{2}\Gamma_{H}^{2}}-2(M_{\gamma\gamma}^{2}-m_{H}^{2})\frac{\operatorname{Re}(\mathcal{A}_{gg\to H}\mathcal{A}_{\gamma\gamma\to H}\mathcal{A}_{\operatorname{cont}}^{*})}{(M_{\gamma\gamma}^{2}-m_{H}^{2})^{2}+m_{H}^{2}\Gamma_{H}^{2}}$$

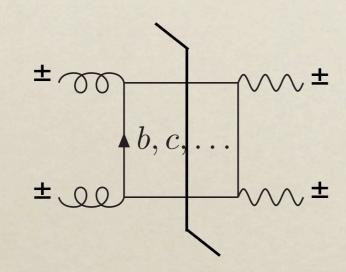
 Integrated cross section of interference term has different dependence on total width: suppressed by small Higgs width w.r.t pure signal

$$\sigma^{int} = \int dM_{\gamma\gamma} \frac{(M_{\gamma\gamma}^2 - m_H^2)R + m_H \Gamma_H I}{(M_{\gamma\gamma}^2 - m_H^2)^2 + m_H^2 \Gamma_H^2} \sim c_g c_{\gamma} \qquad R \sim \text{Re}(\mathcal{A}_{gg \to H} \mathcal{A}_{\gamma\gamma \to H} \mathcal{A}_{\text{cont}}^*) \\ I \sim \text{Im}(\mathcal{A}_{gg \to H} \mathcal{A}_{\gamma\gamma \to H} \mathcal{A}_{\text{cont}}^*)$$

Interference

Interference has two pieces

$$R \sim \operatorname{Re}(\mathcal{A}_{gg\to H} \mathcal{A}_{\gamma\gamma\to H} \mathcal{A}_{\operatorname{cont}}^*)$$
$$I \sim \operatorname{Im}(\mathcal{A}_{gg\to H} \mathcal{A}_{\gamma\gamma\to H} \mathcal{A}_{\operatorname{cont}}^*)$$


$$\sigma^{int} = \int dM_{\gamma\gamma} \frac{(M_{\gamma\gamma}^2 - m_H^2)R + m_H \Gamma_H I}{(M_{\gamma\gamma}^2 - m_H^2)^2 + m_H^2 \Gamma_H^2} \sim c_g c_{\gamma}$$

D.Dicus, S.Willenbrock, Phys.Rev.D37,1801

- Real part of Breit-Wigner: asymmetric around Higgs peak, negligible contribution to integrated cross section given that R doesn't vary too quickly
- Imaginary part of Breit-Wigner: constructive or destructive depending on the relative phase between signal and background

Imaginary part of Interference

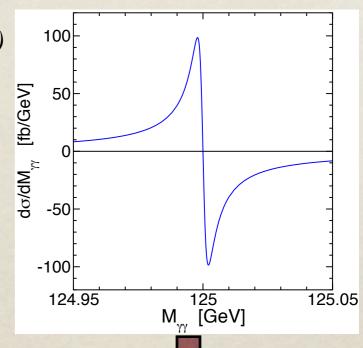
$$I \sim \operatorname{Im}(\mathcal{A}_{gg \to H} \mathcal{A}_{\gamma\gamma \to H} \mathcal{A}_{\operatorname{cont}}^*)$$

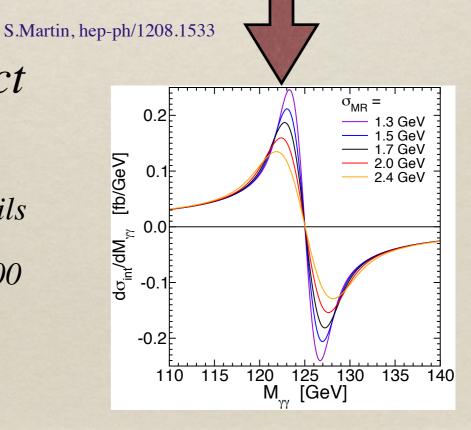
The full ggH and $\gamma\gamma H$ amplitudes are dominantly real for $m_H < 2m_t, 2m_W$ as top and W contribute most to the effective couplings; small imaginary part from light quark loops is suppressed by Yukawa couplings

- Need imaginary part from SM background for the relative phase
- SM continuum contribution starts at 1-loop
 - o vanishing imaginary part in massless quark limit at LO
- 2-loop imaginary part leads to 1-2% destructive interference
- o Too small an effect to see ...

Theoretical uncertainty on signal~15%

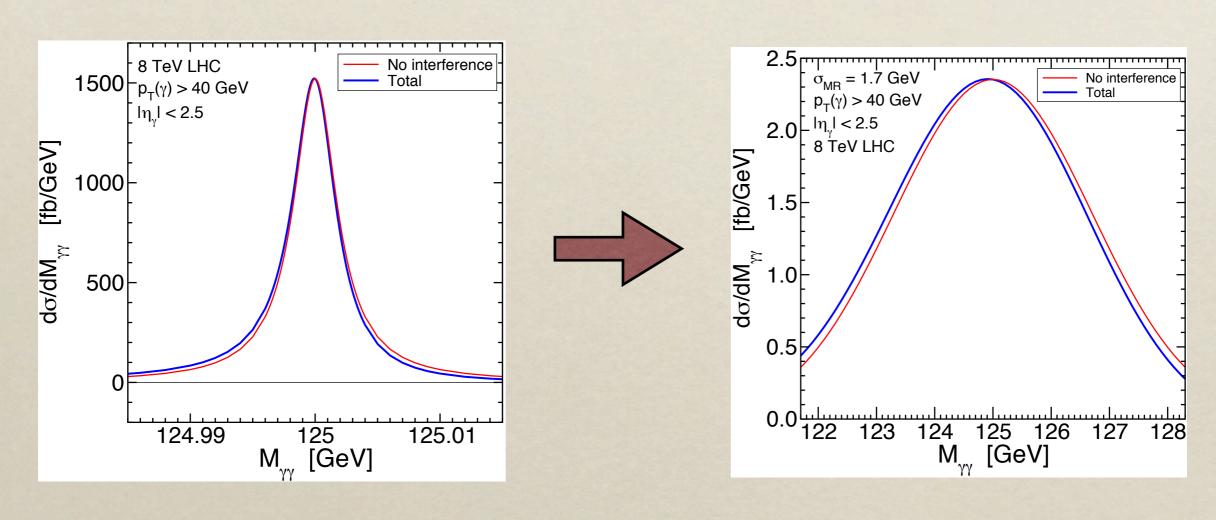
LO Mass Shift

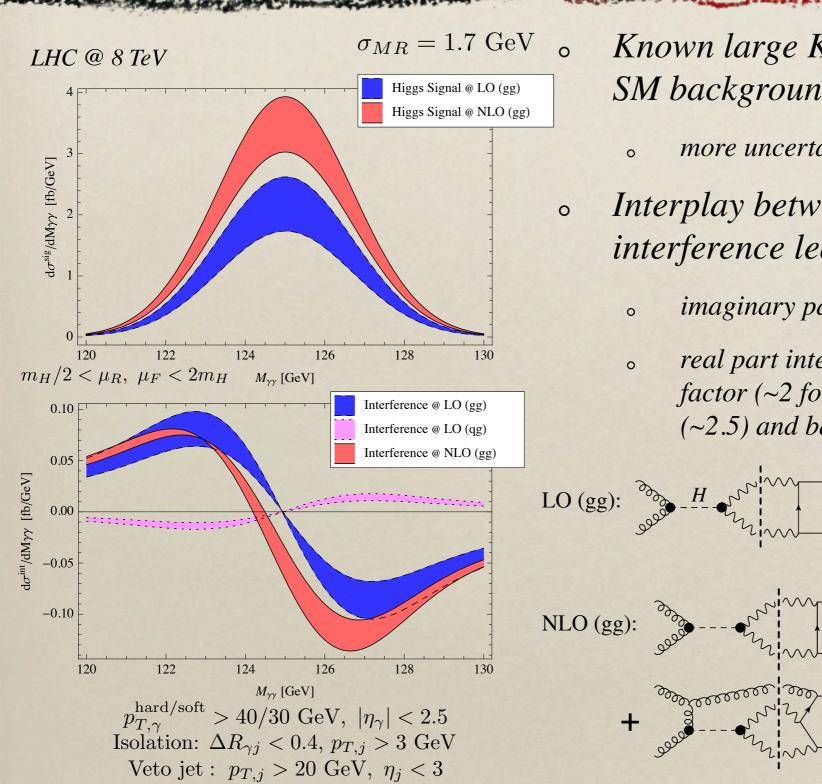

Interference only (LO)


• Real-part interference

- o non-vanishing at 1-loop with massless quarks
- odd around Higgs mass \Rightarrow Higgs mass peak shift
- generically, asymmetric shape peaks/dips at $m_H \pm \Gamma_H/2$ $2 \Rightarrow mass\ shift \sim \Gamma_H$

Different story when including effect of finite detector resolution

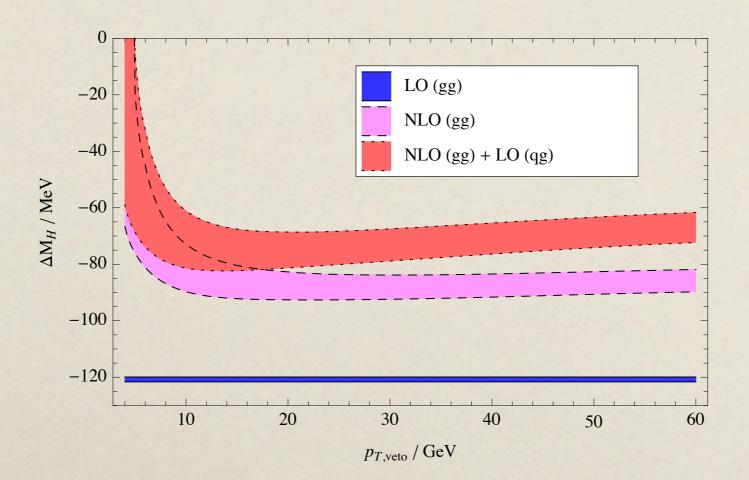

- o considerable contribution from Breit-Wigner tails
- potentially visible shift of Higgs mass peak ~ 100
 MeV



LO Mass Shift

S.Martin, hep-ph/1303.3342

NLO QCD Correction


Known large K factor of Higgs production and SM background in QCD at NLO

o more uncertainty when pT veto is involved

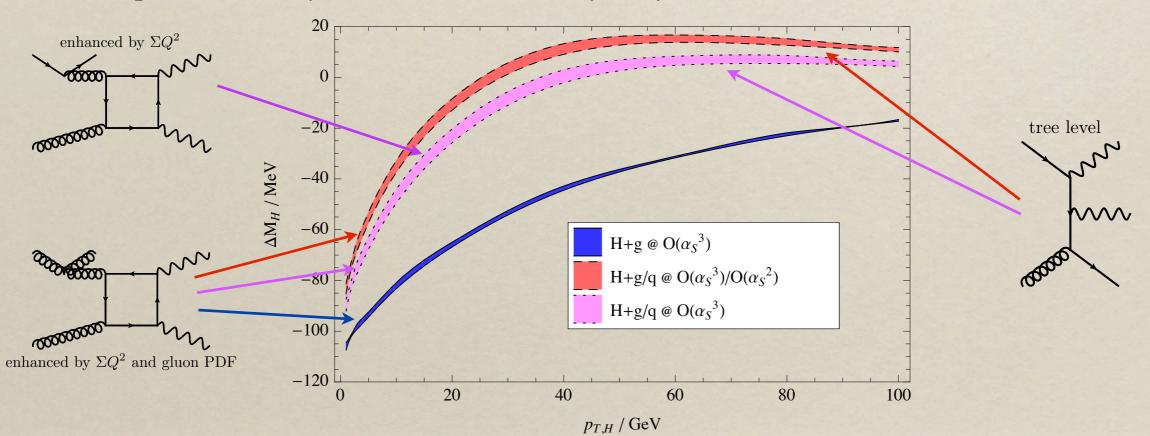
00000

- Interplay between real and imaginary part of the interference leads to K factor depending on $M_{\gamma\gamma}$
 - o imaginary part interference starts at 2-loop and is small
 - real part interference receives a relative constant K factor (~2 for inclusive case) between that of pure signal (~2.5) and background (~1.5)

LO (qg):

- \circ smaller background K factor \Rightarrow reduced mass shift
- with radiation, the extra contribution from the interference with tree level diagram in quark gluon channel, LO(qg), partly cancels with interference of gluon gluon channel, $(N)LO(gg) \Rightarrow$ further reduces mass shift

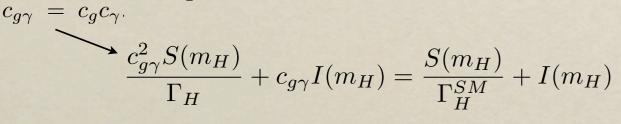
D. de Florian etc. hep-ph/1303.1397


 mostly insensitive to pT veto choice because of large contribution from virtual correction

Probing Mass Shift

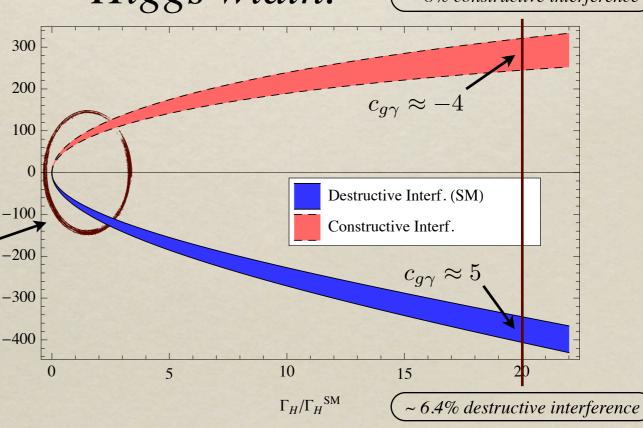
Need a reference channel to measure the shift:

N.Kauer, G.Passarino, hep-ph/1206.4803


- o ZZ* channel where interference near Higgs resonance is negligible
- do it within γγ channel alone?
- Cancellation between qg and gg channels results in strong dependence on Higgs pT
 S.Martin, hep-ph/1303.3342
- Potentially observable with high luminosity data: better choice because experimental systematic uncertainty may cancel to some extent

Bounding Higgs Width

 $\Delta M_H / MeV$


- Mass shift sensitive to
 Higgs width due to
 modified couplings
 - must keep constant signal yields to be consistent with current experimental observation

 simple solution if vanishing destructive (constructive) interference

$$|c_{g\gamma}| = \sqrt{\Gamma_H/\Gamma_H^{SM}}$$

In case NP flips the sign
 of Higgs amplitude ⇒
 Constructive Interference

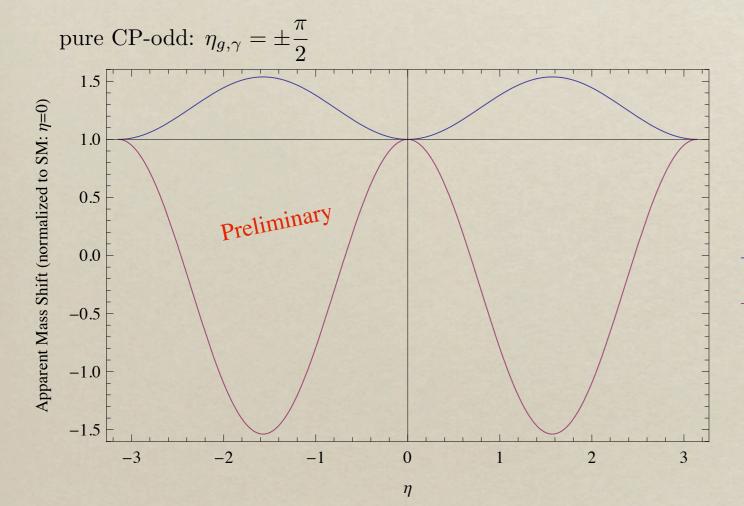
Recap

- The interference of Higgs signal and SM continuum background survives at NLO, allowing the width to be measured separately from couplings experimentally
- Part of interference proportional to real part of BW propagator yields potentially observable mass shift with finite detector resolution
- Strong dependence of mass shift on finite Higgs pT provides way of detecting without reference to ZZ*
- Increasing Higgs width leads to considerably larger mass shift and enhanced constructive/destructive interference

Other Scenarios

- The discussion so far applies to any CP-even spin-0
 particles that couples to photons and gluons similar to
 SM Higgs
- Could the observed "Higgs" be in a mixed state of CP, or even a spin-2 particle?
 - Interference could modify angular distribution of diphoton final states
 - Possible large constructive/destructive interference to signal strength

Higgs in Mixed CP State


 New CP-odd couplings in the effective Lagrangian

$$\mathcal{L} = -\left[\frac{\alpha_s}{8\pi}(c_g b_g G_{a,\mu\nu} G_a^{\mu\nu} + s_g d_g G_{a,\mu\nu} \tilde{G}_a^{\mu\nu}) + \frac{\alpha}{8\pi}(c_\gamma b_\gamma F_{\mu\nu} F^{\mu\nu} + s_\gamma d_\gamma F_{\mu\nu} \tilde{F}^{\mu\nu})\right] \frac{h}{v}$$

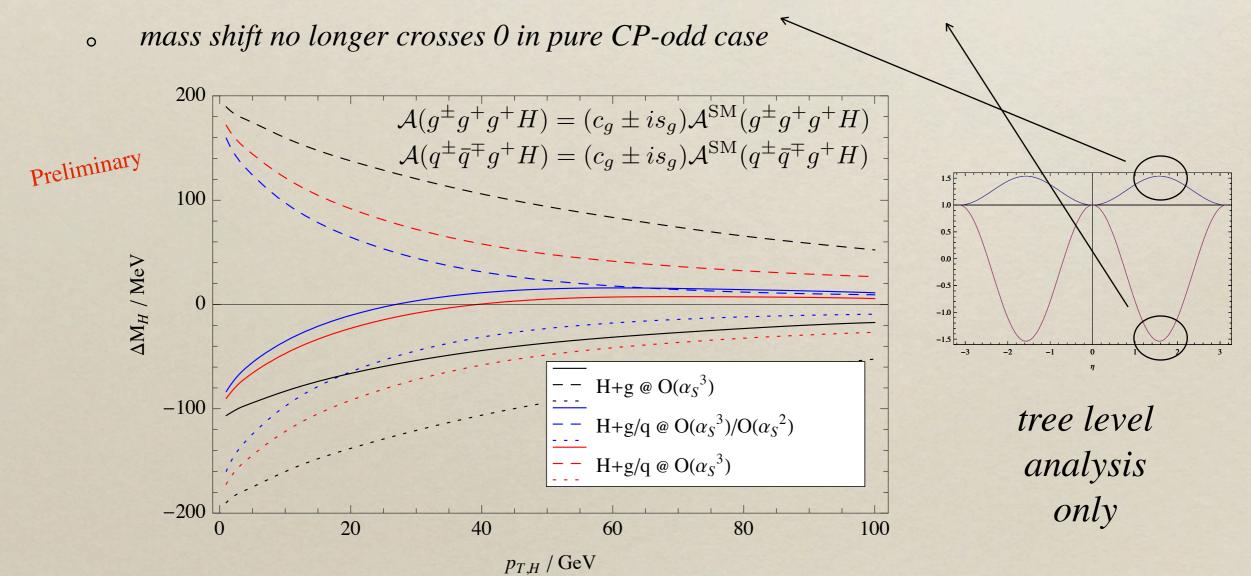
- o In SM, $c_{g/\gamma}=1$ is reserved for adjusting couplings for Higgs in mixed CP state; $b_{g/\gamma}$ is given via matching from full theory; $s_{g/\gamma}d_{g/\gamma}=0$ when Higgs is a CP-even scalar
- \circ $s_{g/\gamma}$ is reserved for the same purpose as $c_{g/\gamma}$
- Define $d_{g/\gamma}$ so that when we turn off original CP-even coupling $(c_{g/\gamma}b_{g/\gamma}=0)$ and set $s_{g/\gamma}=1$, the total cross section of SM Higgs signal is reproduced $\Rightarrow d_{g/\gamma}=b_{g/\gamma}$ at LO

Higgs in CP Mixed State

- To keep constant signal yield, it's not hard to find the solution: $c_{g/\gamma}^2 + s_{g/\gamma}^2 = 1$, naturally parametrized as $c_{g/\gamma}$, $s_{g/\gamma} = cos(\eta_{g/\gamma})$, $sin(\eta_{g/\gamma})$
 - o If we treat the two CP phases (η_g, η_{γ}) independently, the interference could change signs, resulting in positive mass shift
 - The mass shift is roughly 1.5 times stronger in pure CP-odd case compared to CP-even case at LO, though CP-odd case strongly disfavored experimentally

 NLO effect is hard to tell (depending on the full theory giving rise to the CP-odd couplings) but is expected to increase signal and interference both as in the SM case

$$- \eta = \eta_{g} = \eta_{\gamma}$$


$$- \eta = \eta_{g} = -\eta_{\gamma}$$

$$\mathcal{A}(g^{\pm}g^{\pm}H) = (c_{g} \pm is_{g})\mathcal{A}^{SM}(g^{\pm}g^{\pm}H)$$

$$\mathcal{A}(\gamma^{\pm}\gamma^{\pm}H) = (c_{\gamma} \pm is_{\gamma})\mathcal{A}^{SM}(\gamma^{\pm}\gamma^{\pm}H)$$

Higgs with Finite pT

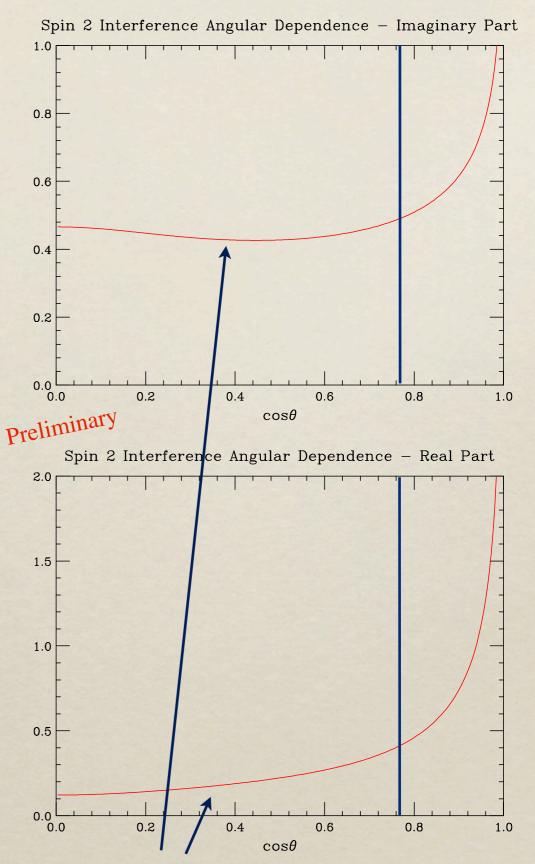
- The mass shift dependence of finite pT as CP phases vary has similar behavior to the zero pT case
 - o solid line is for SM; <u>dotted line</u> is for $c_{g/\gamma}=0$, $s_g=s_{\gamma}=1$; <u>dashed line</u> is for $c_{g/\gamma}=0$, $s_g=-s_{\gamma}=1$

Higgs with Spin-2

- The interference btw signal and background occurs with different helicity configurations (compared to spin-0 case)
 - o Gluon and photon pairs have opposite helicity due to spin conservation
 - Thus non-vanishing imaginary part of SM background amplitude in massless quark limit at LO
- Graviton-like: photon and gluon couples to spin-2 particle via stress energy tensor
 - o Dictates couplings to photon and gluon with the same sign
 - Also discuss couplings with different signs here for completeness
 - Direct coupling of H to quarks not included as it's small for gravitonlike case

Signal vs. Interference

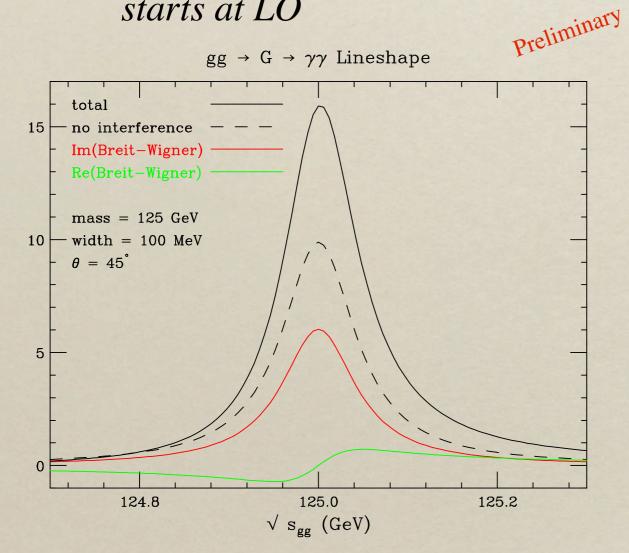
$$\overline{|\mathcal{A}|^2} = \underbrace{\begin{bmatrix} G_{g\gamma}^2 \\ 256 \end{bmatrix}}^{Signal} f_0(c) + \underbrace{(\pi \xi M \Gamma f_i(c))}^{1} \frac{1}{(\hat{s} - M^2)^2 + M^2 \Gamma^2}$$

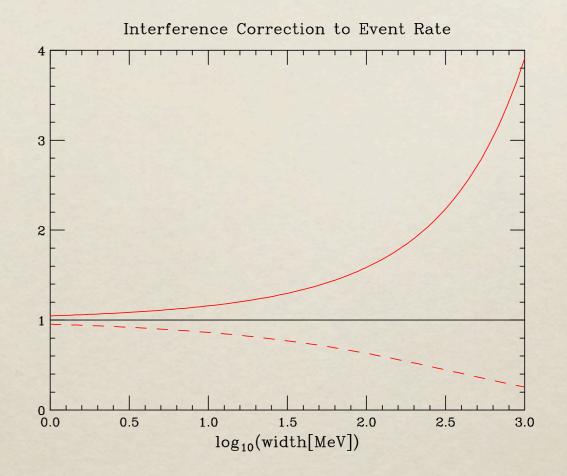

$$\underbrace{[\hat{s} - M^2]^2 + M^2 \Gamma^2}^{Signal} + \underbrace{(\hat{s} - M^2)^2 + M^2 \Gamma^2}^{1} + \underbrace{(\hat{s} - M^2)^2 + M^2 \Gamma^2}^{Signal} + \underbrace{(\hat{s} - M^2)^2 + M^2 \Gamma^2}$$

- Normalize the spin-2 coupling so that signal yield is the same as the SM Higgs
 - Need non-zero photon pT cut for finite interference contribution in spin-2 case
 - Choose $pT_{cut} = 40$ GeV to solve for $G_{g\gamma}$ by equating the yields for spin-0 and spin-2
 - Moderate pT cut (40 GeV) limits photon to central region where interference and signal has relatively similar angular dependence

$$\cos \theta_{max} = \sqrt{1 - 2(p_T^{cut}/M_{\gamma\gamma})^2} \xrightarrow{p_T^{cut} = 40 \text{GeV}} 0.77$$

 signal-only angular distribution analysis largely unaffected by interference contribution


$G_{g\gamma} > 0$ for heavy graviton



almost flat profile for small scattering angle

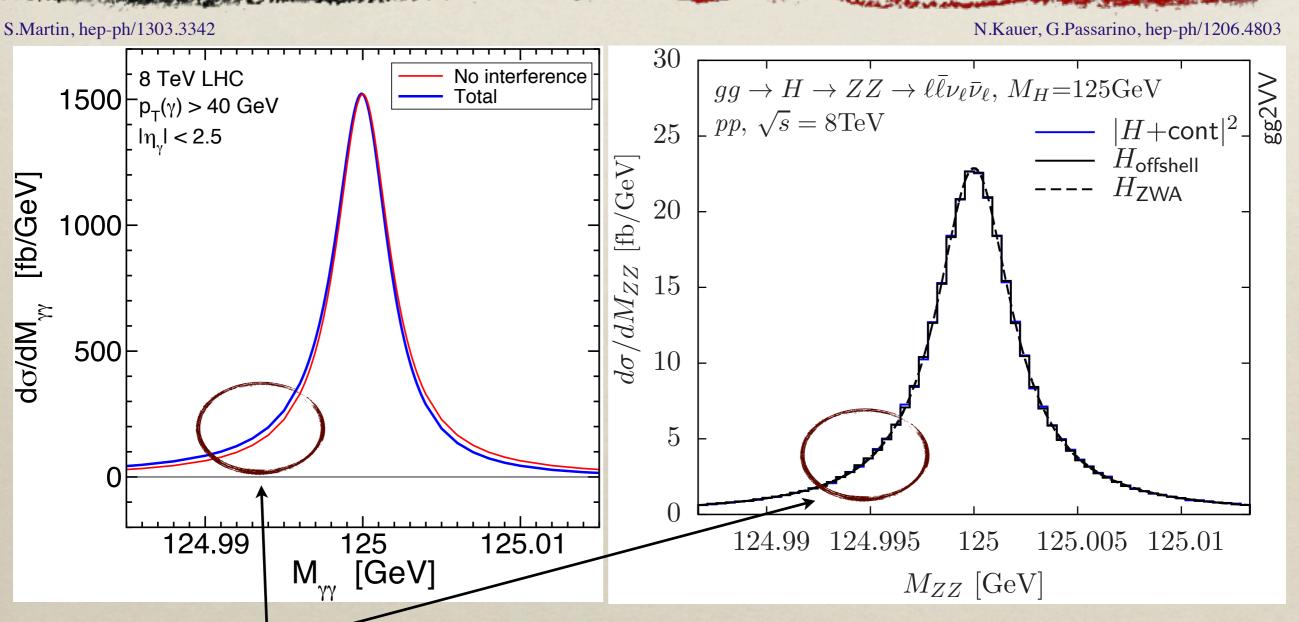
Interference on Signal Yields (Spin-2)

Strong constructive/
 destructive interference at
 large width because
 imaginary part interference
 starts at LO

- for $\Gamma = 100 \, MeV : O(1)$ correction to signal yields (~50%)
- Affect the coupling measurement in spin-2 interpretation

arbitrary unit

Future Work


- Continue study of interference with jets: important due to strong dependence on finite pT in Higgs case
 - Calculation implemented in Sherpa for further angular correlation analysis
 - Higher order correction with resummation helpful for future precision studies
- What role interference plays in Higgs production via vector boson fusion?
 - o most likely small but needs to be examined

Conclusion

- The interference in Higgs diphoton decay channel provides additional degree of freedom to constrain/measure Higgs width
- Interference can also be used to probe other properties of Higgs: spin, CP ...

Backup slides

Interference in ZZ and yy

interference in ZZ is very small The mass measurement can be approximated by a least square fit of the mass peak, which can be shown via likelihood analysis by assuming a relatively constant and well-modeled background in the mass range of consideration