Closing the Wedge with 300 and 3000 fb^{-1} at the LHC

Ian Lewis

Brookhaven National Lab

University of Washington Snowmass Energy Frontier June 30, 2013

Motivation

- We have discovered a Higgs boson:
 - Couplings to massive bosons.
 - Nonuniversal couplings to fermions.
 - Appears the new boson couples according to mass and is related to EWSB.
- Era of directly probing the mechanism of electroweak symmetry breaking (EWSB) has begun.
- Necessary to investigate if there is more to the EWSB sector.
- One popular beyond the standard model theory that addresses this is the Supersymmetry.
- For studies at the LHC energies it is useful to study the minimal low energy realization, the Minimal Supersymmetric Standard Model (MSSM).

MSSM Higgs Sector

- lacktriangle Due to the need for anomaly cancellation, the MSSM contains two Higgs doublets, H_1, H_2 .
- There are five physical Higgs bosons: h, H, A, H^{\pm}
- At tree level, Higgs sector described by two parameters, typically chosen to be $\tan \beta = v_1/v_2$ and M_A
- We will consider the scenario where the lightest Higgs boson, h, is identified as the Higgs discovered at M_h = 125.5 GeV.

Ian Lewis (BNL) Closing the Wedge UW-EF, 6-30-2013 3 / 20

MSSM Higgs Sector

- \bullet Due to the need for anomaly cancellation, the MSSM contains two Higgs doublets, H_1, H_2 .
- There are five physical Higgs bosons: h, H, A, H[±]
- At tree level, Higgs sector described by two parameters, typically chosen to be $\tan \beta = v_1/v_2$ and M_A
- We will consider the scenario where the lightest Higgs boson, h, is identified as the Higgs discovered at M_h = 125.5 GeV.
- At tree level $M_h \le M_Z$. Fortunately, stop loops provide considerable correction to the Higgs mass.
- The leading component to the Higgs mass from stop loops:

$$\varepsilon = \frac{3\bar{m}_t^4}{2\pi^2 v^2 \sin^2 \beta} \left[\log \frac{M_{\rm S}^2}{\bar{m}_t^2} + \frac{X_t^2}{M_{\rm S}^2} \left(1 - \frac{X_t^2}{12M_{\rm S}^2} \right) \right]$$

- Stop mixing parameter: $X_t = A_t \mu \cot \beta$
- $M_S = \sqrt{m_{\tilde{t}_1 \tilde{t}_2}}$ is the geometric mean of the stop masses.
- This correction is maximized when $X_t = \sqrt{6}M_S$.

lan Lewis (BNL) Closing the Wedge UW-EF, 6-30-2013

3/20

Benchmarks

- Will consider benchmark points from Carena, Heinemeyer, Stål, Wagner, Weiglein, 1302.7033.
- ullet $m_h^{
 m max}$ scenario chosen to maximize one-loop stop correction to Higgs mass
 - Carena, Heinemeyer, Wagner, Weiglein, hep-ph/0202167 $\bullet \quad X_t^{OS} = 2 M_{SUSY} \ \, \mbox{(on-shell calculation)}$
 - $X_t^{\overline{MS}} = \sqrt{6}M_{SUSY}$ (\overline{MS} calculation)
- $X_t^{\text{MS}} = \sqrt{6M_{\text{SUSY}}}$ (MS calculation)
- However, m_h^{\max} does its job too well... much of $\tan \beta M_A$ region produces too large a Higgs mass.
- Slightly decrease stop mixing parameter.
- $m_h^{\text{mod}+}$:
 - $X_t^{OS} = 1.5 M_{SUSY}$
 - $X_t^{\overline{\text{MS}}} = 1.6 M_{\text{SUSY}}$
- \bullet $m_h^{\text{mod}-}$:
 - $X_t^{OS} = -1.9 M_{SUSY}$
 - $\bullet X_t^{\overline{\text{MS}}} = -2.2 M_{\text{SUSY}}$
- Third generation squark masses: $M_{\rm SUSY} \equiv M_{ ilde{t}_{\rm L}} = M_{ ilde{b}_{\rm L}} = M_{ ilde{t}_{\rm R}} = M_{ ilde{b}_{\rm R}}$

4/20

Benchmarks

- Common parameters Carena, Heinemeyer, Stål, Wagner, Weiglen, 1302.7033:
 - $M_{\tilde{q}_{1,2}} = 3M_{\tilde{h}_{2}} = 1500 \text{ GeV}$
 - $A_f = 0$, $(f = c, s, u, d, \mu, e)$
 - $m_t = 173.2 \text{ GeV}$
 - $M_1 = \frac{5}{3} \frac{s_w^2}{c^2} M_2$
 - $\mu = M_2 = 200 \text{ GeV}$
 - $m_{\tilde{g}} = \frac{3}{2} M_{\tilde{l}_2} = 1500 \text{ GeV}$
 - $A_b = A_\tau = A_t$

M_h range from benchmarks

- Band in $\tan \beta M_A$ plane for which M_h inside 125.5 \pm 3 GeV range carena, Heinemeyer, Stål, Wagner, Weiglen, 1302.7033.
- Decoupling regime $M_A \gg M_Z$: $M_h^2 = M_Z^2 \cos^2 2\beta + \varepsilon \sin^2 \beta$
- FeynHiggs Heinemeyer, Hollik, Weiglein, hep-ph/9812320 was used to produce this plot, and it is used
 extensively in the rest of the presentation.

Production at 7 TeV LHC

- Kink at $M_{\phi} \sim$ 320 GeV from imaginary part in top loop.
- The bb cross section has been rescaled from the SM value produced by bbh@nnlo Harlander, Kilgore, hep-ph/0304035, and the gg cross section is rescaled from the values given by the LHC Higgs Cross Section Working Group.

Decays of Pseudoscalar

- At high $\tan \beta$, $b\bar{b}$ and $\tau^+\tau^-$ dominate.
- At lower tan β, neutralino and chargino decays much more important.

 $\tan \beta = 7$

Decays of Heavy Scalar

- At high tan β , $b\bar{b}$ and $\tau^+\tau^-$ dominate.
- More complicated at lower $\tan \beta$, depends on mass range.

Decays of Pseudoscalar With $M_2 = 2$ TeV

- M₂ = 2 TeV alters neutralino mass spectrum and branching ratios of heavy Higgs.
- $A \rightarrow \tau^+ \tau^-$ more viable for all tan β .
- $A \rightarrow hZ$ more important at low tan β
- Extends range for $H \rightarrow hh$

The Wedge

- Different search modes at LHC relevant for high and low tan β .
- Since production cross sections and branching ratios similar in three benchmarks, will focus on m_h^{max}
- Focus on $\Phi \to \tau^+ \tau^-$ searches, extending current LHC limits.
- Also investigate $A \rightarrow hZ$ to open lower tan β regime.
- All cross section bounds assumed to scale as $1/\sqrt{Luminosity}$

Ian Lewis (BNL) Closing the Wedge UW-EF. 6-30-2013 11/20

Current bounds on $\sigma(pp \to \phi) \times \mathrm{BR}(\phi \to \tau^+\tau^-)$

Ian Lewis (BNL) Closing the Wedge UW-EF, 6-30-2013 12 / 20

Current bounds

JHEP02(2013)095 1211.6956 CMS-PAS-HIG-12-050

13 / 20

Projection of bounds to 300 and 3000 fb⁻¹

• Included conservative error bands of $\Delta\sigma(\Phi) \times \mathrm{BR}(\Phi \to \tau^+\tau^-) = \pm 25\%$ Baglio, Diouadi, 1012.0530; Diouadi, Quevillon, 1304.1787

lan Lewis (BNL) Closing the Wedge UW-EF, 6-30-2013 14 / 20

Projection of bounds to 300 and 3000 fb⁻¹ with $M_2 = 2$ TeV

• Included conservative error bands of $\Delta\sigma(\Phi) \times BR(\Phi \to \tau^+\tau^-) = \pm 25\%$ Badlio, Diouadi, 1012.0530; Diouadi, Quevillon, 1304.1787

Ian Lewis (BNL) Closing the Wedge UW-EF, 6-30-2013 15 / 20

Projection of bounds to 300 and 3000 fb⁻¹

Bounds on M_A in m_h^{max} scenario:

71 11		
Luminosity	ATLAS	CMS
$300 \; {\rm fb}^{-1}$	210-240 GeV	230-260 GeV
3000 fb ⁻¹	260-290 GeV	290-360 GeV

Low tan B

 Although benchmarks considered here do not reproduce correct Higgs mass at low tan β, it is possible to reproduce Higgs mass by increasing M_{SUSY} considerably

Diouadi, Quevillon, 1304,1787

- Search strategy largely depends on neutralino and chargino spectrum.
- Additional signals of additional interest are $A \rightarrow hZ$, $H \rightarrow hh$, and $H \rightarrow WW$.

Ian Lewis (BNL) Closing the Wedge UW-EF. 6-30-2013 17 / 20

Projection for $A \rightarrow hZ$

- For a 125 GeV Higgs, current bounds on associated productions are
 - ATLAS: $\sigma(VH) < 1.75 \times \sigma(VH)_{SM}$ with 17.7 fb⁻¹ atlas-conf-2012-161
 - CMS: $\sigma(VH) < 1.9 \times \sigma(VH)_{SM}$ with 24 fb⁻¹ cms-pas-Hig-13-012
- No dedicated resonance search, so apply these upper bounds on $\sigma(A \to hZ)$
- With 200 GeV \lesssim $M_A\lesssim$ 250 GeV, sensitive to tan $\beta\lesssim$ 2 with 300 fb $^{-1}$ and tan $\beta\lesssim$ 3 with 3000 fb $^{-1}$

Ian Lewis (BNL) Closing the Wedge UW-EF, 6-30-2013 18 / 20

ILC

- Search for Higgs-strahlung, $e^+e^- \to Z^* \to Z\Phi$, or pair production $e^+e^- \to Z^* \to \Phi A$
- For $M_A \gtrsim 200 \text{ GeV}$
 - Z Z H and Z h A couplings suppressed
 - Z Z h and Z H A coupling nearly maximal.
- For direct production, if have sufficient energy can have unsuppressed production of $e^+e^- \to Z^* \to HA$.
- Substantial decay channels such as $A/H \rightarrow b\bar{b}$, $A/H \rightarrow t\bar{t}$, $H \rightarrow hh \rightarrow 4b$, and $A \rightarrow Zh \rightarrow Zb\bar{b}$ easier to detect than LHC.
- Not as much uncertainty as LHC in production cross section.
- Should be able to close out wedge without as much ambiguity about theory errors.

lan Lewis (BNL) Closing the Wedge UW-EF, 6-30-2013

19/20

Conclusions

- Higgs discovery just beginning of the exploration of EWSB.
- One popular alternative to the SM EWSB scenario is the MSSM.
- Contains 5 Higgs bosons: h, H, A, H^{\pm}
- We used current constraints from ATLAS and CMS on $\sigma(pp \to H/A \to \tau^+\tau^-)$ to explore high $\tan \beta$ regime and extrapolate bounds on the M_A $\tan \beta$ plane at 300 and 3000 fb⁻¹
- Found with 300 fb⁻¹
 - ATLAS can exclude $m_h^{\rm max}$ benchmark for $M_A \lesssim 210-240~{\rm GeV}$
 - ullet CMS can exclude $m_h^{
 m max}$ benchmark for $M_A\lesssim 230-260$ GeV
- Found with 3000 fb⁻¹
 - ATLAS can exclude m_h^{max} benchmark for $M_A \lesssim 260 290 \text{ GeV}$
 - CMS can exclude m_h^{max} benchmark for $M_A \lesssim 290 360 \text{ GeV}$
- To examine low tan β regime, also placed bounds on A → Zh production via the bound on SM Vh production with M_h = 125 GeV.
- In the $m_h^{\rm max}$ scenario with 200 GeV $\lesssim M_A \lesssim$ 250 GeV, LHC is sensitive to $\tan \beta \lesssim 2$ with 300 fb⁻¹ and $\tan \beta \lesssim 3$ with 3000 fb⁻¹
- Increasing M₂ can substantially strengthen all bounds.

EXTRA SLIDES

M_h in the m_h^{max} scheme

- Now know $M_h \sim 125.5$
- Band in $\tan \beta M_A$ plane for which M_h inside 125.5 \pm 3 GeV range.

lan Lewis (BNL) Closing the Wedge UW-EF, 6-30-2013 22 / 20